Loading…
Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model
This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most signific...
Saved in:
Published in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 2023-10, Vol.84 (4), p.432-448 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3 |
container_end_page | 448 |
container_issue | 4 |
container_start_page | 432 |
container_title | Numerical heat transfer. Part B, Fundamentals |
container_volume | 84 |
creator | Ur Rehman, M. Israr Chen, Haibo Hamid, Aamir Jamshed, Wasim Eid, Mohamed R. El-Wahed Khalifa, Hamiden Abd Ali Yousif, Badria Almaz |
description | This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above. |
doi_str_mv | 10.1080/10407790.2023.2211228 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2854122279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854122279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVsIJELIJyBZYt0Tv_rFCjSQECkSG1CWVo1dTjty28H2ZNQ_w7fiYcI2talanLqlW7dpPjC6YXSkl4xKOgwT3XDKxYZzxjgfXzVnrOOspT3vX9e5Mu0Retu8y_mB1pJCnjV_tjMuToMnCUEX94TkMUWNOZNoyT7kgmBWsnNRx_CEJ2KB-4AlkjvnvYMlx0AChGj93hlifTwQ0ClWiQOaeyQHV2YSYvAuICS_kjJjWo4nwTgoLoZP5CskvbZXMel5RrdgIks06N83byz4jBfP_bz5dfXt5_Z7e_vj-mb75bbVQoyl1XoA2e_ESLthEAx6a80kpEXLejtCZxlnI5dyAj4ZPjE9MLozIKeeDjAyEOfNx5NuNf97j7moh7hPoZ5UfOxkfSgfpkp1J-qfu4RWPSa3QFoVo-oYhfofhTpGoZ6jqHufT3su2FidH2LyRhVYfUw2QdAuK_GyxF8fWZOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854122279</pqid></control><display><type>article</type><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</creator><creatorcontrib>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</creatorcontrib><description>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790.2023.2211228</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Automotive engines ; Concentricity ; Darcy-Forchheimer ; Density ; Fluid flow ; Friction factor ; Hartmann number ; Mass transport ; Microorganisms ; motile microorganisms ; nanofluidics ; Nanofluids ; Nanoparticles ; nonlinear thermal radiation ; numerical results ; Ordinary differential equations ; Partial differential equations ; Semiconductor lasers ; Thermal radiation ; Thermodynamic properties ; wedge geometry ; Williamson fluid</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2023-10, Vol.84 (4), p.432-448</ispartof><rights>2023 Taylor & Francis Group, LLC 2023</rights><rights>2023 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</citedby><cites>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</cites><orcidid>0000-0003-2479-9809 ; 0000-0001-9438-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ur Rehman, M. Israr</creatorcontrib><creatorcontrib>Chen, Haibo</creatorcontrib><creatorcontrib>Hamid, Aamir</creatorcontrib><creatorcontrib>Jamshed, Wasim</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><creatorcontrib>El-Wahed Khalifa, Hamiden Abd</creatorcontrib><creatorcontrib>Ali Yousif, Badria Almaz</creatorcontrib><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</description><subject>Automotive engines</subject><subject>Concentricity</subject><subject>Darcy-Forchheimer</subject><subject>Density</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Hartmann number</subject><subject>Mass transport</subject><subject>Microorganisms</subject><subject>motile microorganisms</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>nonlinear thermal radiation</subject><subject>numerical results</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Semiconductor lasers</subject><subject>Thermal radiation</subject><subject>Thermodynamic properties</subject><subject>wedge geometry</subject><subject>Williamson fluid</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRVsIJELIJyBZYt0Tv_rFCjSQECkSG1CWVo1dTjty28H2ZNQ_w7fiYcI2talanLqlW7dpPjC6YXSkl4xKOgwT3XDKxYZzxjgfXzVnrOOspT3vX9e5Mu0Retu8y_mB1pJCnjV_tjMuToMnCUEX94TkMUWNOZNoyT7kgmBWsnNRx_CEJ2KB-4AlkjvnvYMlx0AChGj93hlifTwQ0ClWiQOaeyQHV2YSYvAuICS_kjJjWo4nwTgoLoZP5CskvbZXMel5RrdgIks06N83byz4jBfP_bz5dfXt5_Z7e_vj-mb75bbVQoyl1XoA2e_ESLthEAx6a80kpEXLejtCZxlnI5dyAj4ZPjE9MLozIKeeDjAyEOfNx5NuNf97j7moh7hPoZ5UfOxkfSgfpkp1J-qfu4RWPSa3QFoVo-oYhfofhTpGoZ6jqHufT3su2FidH2LyRhVYfUw2QdAuK_GyxF8fWZOx</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Ur Rehman, M. Israr</creator><creator>Chen, Haibo</creator><creator>Hamid, Aamir</creator><creator>Jamshed, Wasim</creator><creator>Eid, Mohamed R.</creator><creator>El-Wahed Khalifa, Hamiden Abd</creator><creator>Ali Yousif, Badria Almaz</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2479-9809</orcidid><orcidid>https://orcid.org/0000-0001-9438-6132</orcidid></search><sort><creationdate>20231003</creationdate><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><author>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive engines</topic><topic>Concentricity</topic><topic>Darcy-Forchheimer</topic><topic>Density</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Hartmann number</topic><topic>Mass transport</topic><topic>Microorganisms</topic><topic>motile microorganisms</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>nonlinear thermal radiation</topic><topic>numerical results</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Semiconductor lasers</topic><topic>Thermal radiation</topic><topic>Thermodynamic properties</topic><topic>wedge geometry</topic><topic>Williamson fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ur Rehman, M. Israr</creatorcontrib><creatorcontrib>Chen, Haibo</creatorcontrib><creatorcontrib>Hamid, Aamir</creatorcontrib><creatorcontrib>Jamshed, Wasim</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><creatorcontrib>El-Wahed Khalifa, Hamiden Abd</creatorcontrib><creatorcontrib>Ali Yousif, Badria Almaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ur Rehman, M. Israr</au><au>Chen, Haibo</au><au>Hamid, Aamir</au><au>Jamshed, Wasim</au><au>Eid, Mohamed R.</au><au>El-Wahed Khalifa, Hamiden Abd</au><au>Ali Yousif, Badria Almaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>84</volume><issue>4</issue><spage>432</spage><epage>448</epage><pages>432-448</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><abstract>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/10407790.2023.2211228</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2479-9809</orcidid><orcidid>https://orcid.org/0000-0001-9438-6132</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical heat transfer. Part B, Fundamentals, 2023-10, Vol.84 (4), p.432-448 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_proquest_journals_2854122279 |
source | Taylor and Francis Science and Technology Collection |
subjects | Automotive engines Concentricity Darcy-Forchheimer Density Fluid flow Friction factor Hartmann number Mass transport Microorganisms motile microorganisms nanofluidics Nanofluids Nanoparticles nonlinear thermal radiation numerical results Ordinary differential equations Partial differential equations Semiconductor lasers Thermal radiation Thermodynamic properties wedge geometry Williamson fluid |
title | Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20reactive%20process%20of%20unsteady%20bioconvective%20magneto%20Williamson%20nanofluid%20flow%20across%20wedge%20with%20nonlinearly%20thermal%20radiation:%20Darcy-Forchheimer%20model&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Ur%20Rehman,%20M.%20Israr&rft.date=2023-10-03&rft.volume=84&rft.issue=4&rft.spage=432&rft.epage=448&rft.pages=432-448&rft.issn=1040-7790&rft.eissn=1521-0626&rft_id=info:doi/10.1080/10407790.2023.2211228&rft_dat=%3Cproquest_infor%3E2854122279%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854122279&rft_id=info:pmid/&rfr_iscdi=true |