Loading…

Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model

This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most signific...

Full description

Saved in:
Bibliographic Details
Published in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 2023-10, Vol.84 (4), p.432-448
Main Authors: Ur Rehman, M. Israr, Chen, Haibo, Hamid, Aamir, Jamshed, Wasim, Eid, Mohamed R., El-Wahed Khalifa, Hamiden Abd, Ali Yousif, Badria Almaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3
cites cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3
container_end_page 448
container_issue 4
container_start_page 432
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 84
creator Ur Rehman, M. Israr
Chen, Haibo
Hamid, Aamir
Jamshed, Wasim
Eid, Mohamed R.
El-Wahed Khalifa, Hamiden Abd
Ali Yousif, Badria Almaz
description This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.
doi_str_mv 10.1080/10407790.2023.2211228
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2854122279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854122279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVsIJELIJyBZYt0Tv_rFCjSQECkSG1CWVo1dTjty28H2ZNQ_w7fiYcI2talanLqlW7dpPjC6YXSkl4xKOgwT3XDKxYZzxjgfXzVnrOOspT3vX9e5Mu0Retu8y_mB1pJCnjV_tjMuToMnCUEX94TkMUWNOZNoyT7kgmBWsnNRx_CEJ2KB-4AlkjvnvYMlx0AChGj93hlifTwQ0ClWiQOaeyQHV2YSYvAuICS_kjJjWo4nwTgoLoZP5CskvbZXMel5RrdgIks06N83byz4jBfP_bz5dfXt5_Z7e_vj-mb75bbVQoyl1XoA2e_ESLthEAx6a80kpEXLejtCZxlnI5dyAj4ZPjE9MLozIKeeDjAyEOfNx5NuNf97j7moh7hPoZ5UfOxkfSgfpkp1J-qfu4RWPSa3QFoVo-oYhfofhTpGoZ6jqHufT3su2FidH2LyRhVYfUw2QdAuK_GyxF8fWZOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854122279</pqid></control><display><type>article</type><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</creator><creatorcontrib>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</creatorcontrib><description>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790.2023.2211228</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Automotive engines ; Concentricity ; Darcy-Forchheimer ; Density ; Fluid flow ; Friction factor ; Hartmann number ; Mass transport ; Microorganisms ; motile microorganisms ; nanofluidics ; Nanofluids ; Nanoparticles ; nonlinear thermal radiation ; numerical results ; Ordinary differential equations ; Partial differential equations ; Semiconductor lasers ; Thermal radiation ; Thermodynamic properties ; wedge geometry ; Williamson fluid</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2023-10, Vol.84 (4), p.432-448</ispartof><rights>2023 Taylor &amp; Francis Group, LLC 2023</rights><rights>2023 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</citedby><cites>FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</cites><orcidid>0000-0003-2479-9809 ; 0000-0001-9438-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ur Rehman, M. Israr</creatorcontrib><creatorcontrib>Chen, Haibo</creatorcontrib><creatorcontrib>Hamid, Aamir</creatorcontrib><creatorcontrib>Jamshed, Wasim</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><creatorcontrib>El-Wahed Khalifa, Hamiden Abd</creatorcontrib><creatorcontrib>Ali Yousif, Badria Almaz</creatorcontrib><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</description><subject>Automotive engines</subject><subject>Concentricity</subject><subject>Darcy-Forchheimer</subject><subject>Density</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Hartmann number</subject><subject>Mass transport</subject><subject>Microorganisms</subject><subject>motile microorganisms</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>nonlinear thermal radiation</subject><subject>numerical results</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Semiconductor lasers</subject><subject>Thermal radiation</subject><subject>Thermodynamic properties</subject><subject>wedge geometry</subject><subject>Williamson fluid</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRVsIJELIJyBZYt0Tv_rFCjSQECkSG1CWVo1dTjty28H2ZNQ_w7fiYcI2talanLqlW7dpPjC6YXSkl4xKOgwT3XDKxYZzxjgfXzVnrOOspT3vX9e5Mu0Retu8y_mB1pJCnjV_tjMuToMnCUEX94TkMUWNOZNoyT7kgmBWsnNRx_CEJ2KB-4AlkjvnvYMlx0AChGj93hlifTwQ0ClWiQOaeyQHV2YSYvAuICS_kjJjWo4nwTgoLoZP5CskvbZXMel5RrdgIks06N83byz4jBfP_bz5dfXt5_Z7e_vj-mb75bbVQoyl1XoA2e_ESLthEAx6a80kpEXLejtCZxlnI5dyAj4ZPjE9MLozIKeeDjAyEOfNx5NuNf97j7moh7hPoZ5UfOxkfSgfpkp1J-qfu4RWPSa3QFoVo-oYhfofhTpGoZ6jqHufT3su2FidH2LyRhVYfUw2QdAuK_GyxF8fWZOx</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Ur Rehman, M. Israr</creator><creator>Chen, Haibo</creator><creator>Hamid, Aamir</creator><creator>Jamshed, Wasim</creator><creator>Eid, Mohamed R.</creator><creator>El-Wahed Khalifa, Hamiden Abd</creator><creator>Ali Yousif, Badria Almaz</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2479-9809</orcidid><orcidid>https://orcid.org/0000-0001-9438-6132</orcidid></search><sort><creationdate>20231003</creationdate><title>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</title><author>Ur Rehman, M. Israr ; Chen, Haibo ; Hamid, Aamir ; Jamshed, Wasim ; Eid, Mohamed R. ; El-Wahed Khalifa, Hamiden Abd ; Ali Yousif, Badria Almaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive engines</topic><topic>Concentricity</topic><topic>Darcy-Forchheimer</topic><topic>Density</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Hartmann number</topic><topic>Mass transport</topic><topic>Microorganisms</topic><topic>motile microorganisms</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>nonlinear thermal radiation</topic><topic>numerical results</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Semiconductor lasers</topic><topic>Thermal radiation</topic><topic>Thermodynamic properties</topic><topic>wedge geometry</topic><topic>Williamson fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ur Rehman, M. Israr</creatorcontrib><creatorcontrib>Chen, Haibo</creatorcontrib><creatorcontrib>Hamid, Aamir</creatorcontrib><creatorcontrib>Jamshed, Wasim</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><creatorcontrib>El-Wahed Khalifa, Hamiden Abd</creatorcontrib><creatorcontrib>Ali Yousif, Badria Almaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ur Rehman, M. Israr</au><au>Chen, Haibo</au><au>Hamid, Aamir</au><au>Jamshed, Wasim</au><au>Eid, Mohamed R.</au><au>El-Wahed Khalifa, Hamiden Abd</au><au>Ali Yousif, Badria Almaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>84</volume><issue>4</issue><spage>432</spage><epage>448</epage><pages>432-448</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><abstract>This article examines the chemically reactive process of time-dependent bioconvective magnetohydrodynamic Williamson nanofluid flowing toward a wedge with radiative heat in the presence of gyrotactic motile microorganisms. The main goal is to boost heat transport. Nanoparticles are the most significant and widely utilized source of heat in both science and industrial mechanisms. Nanotechnology with remarkable thermal properties has a variety of roles in laser diode, energy transport, boilers, power generation, MEMS, medication, cool automobile engines, and electronic cooling mechanisms, among many others. The current prominent problem considering this stream is involved partial differential equations (PDEs). A suitable modification is utilized to change PDEs to ordinary differential equations (ODEs), which are computationally solved by mean of R-K fourth-order approach based on shooting technique. The prominent characteristics of nanoparticles such as liquid velocity, concentricity, thermal, drag friction factor, motile organisms, heat and mass transport, and density of motile microorganisms are examined concerning numerous variables. It is noticeable that the velocity curve declined for the escalated valuation of the Hartmann number and bioconvective Rayleigh number. The motile density decayed by climbing valuation of Lewis number and microorganisms difference factor. A review of the available research in the field verifies the findings stated above.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10407790.2023.2211228</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2479-9809</orcidid><orcidid>https://orcid.org/0000-0001-9438-6132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 2023-10, Vol.84 (4), p.432-448
issn 1040-7790
1521-0626
language eng
recordid cdi_proquest_journals_2854122279
source Taylor and Francis Science and Technology Collection
subjects Automotive engines
Concentricity
Darcy-Forchheimer
Density
Fluid flow
Friction factor
Hartmann number
Mass transport
Microorganisms
motile microorganisms
nanofluidics
Nanofluids
Nanoparticles
nonlinear thermal radiation
numerical results
Ordinary differential equations
Partial differential equations
Semiconductor lasers
Thermal radiation
Thermodynamic properties
wedge geometry
Williamson fluid
title Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy-Forchheimer model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20reactive%20process%20of%20unsteady%20bioconvective%20magneto%20Williamson%20nanofluid%20flow%20across%20wedge%20with%20nonlinearly%20thermal%20radiation:%20Darcy-Forchheimer%20model&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Ur%20Rehman,%20M.%20Israr&rft.date=2023-10-03&rft.volume=84&rft.issue=4&rft.spage=432&rft.epage=448&rft.pages=432-448&rft.issn=1040-7790&rft.eissn=1521-0626&rft_id=info:doi/10.1080/10407790.2023.2211228&rft_dat=%3Cproquest_infor%3E2854122279%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cc7a46b38057731a6ffd934fef16f8a5f12182449a29d291c710bda49607a81a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854122279&rft_id=info:pmid/&rfr_iscdi=true