Loading…
EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices
Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and ar...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Liang Zhang, Nan Qu, Xiaoyang Wang, Jianzong Wan, Jiguang Li, Guokuan Hu, Kaiyu Jiang, Guilin Xiao, Jing |
description | Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2854127737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854127737</sourcerecordid><originalsourceid>FETCH-proquest_journals_28541277373</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_-KCzoJs26SZldPFS0lWG-4zJdOZm4L_PoB_Q6V3eeyviUcaiII0p3RDf2jYMQ3rgNEmYR4pcPrHIjlAYiRoyKQYnnDI93GfrsIPGjHBDoYNSdQgPJdFA1gs9O1VbWLzvAM74VjXaHVk3Qlv0f9yS_SUvT9dgGM1rQuuq1kzjUtuKpkkcUc4ZZ_9ZH8NHPGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854127737</pqid></control><display><type>article</type><title>EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices</title><source>Publicly Available Content (ProQuest)</source><creator>Wang, Liang ; Zhang, Nan ; Qu, Xiaoyang ; Wang, Jianzong ; Wan, Jiguang ; Li, Guokuan ; Hu, Kaiyu ; Jiang, Guilin ; Xiao, Jing</creator><creatorcontrib>Wang, Liang ; Zhang, Nan ; Qu, Xiaoyang ; Wang, Jianzong ; Wan, Jiguang ; Li, Guokuan ; Hu, Kaiyu ; Jiang, Guilin ; Xiao, Jing</creatorcontrib><description>Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Artificial neural networks ; Drift ; Mathematical analysis ; Real time ; Video data</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2854127737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Qu, Xiaoyang</creatorcontrib><creatorcontrib>Wang, Jianzong</creatorcontrib><creatorcontrib>Wan, Jiguang</creatorcontrib><creatorcontrib>Li, Guokuan</creatorcontrib><creatorcontrib>Hu, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Guilin</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><title>EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices</title><title>arXiv.org</title><description>Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Drift</subject><subject>Mathematical analysis</subject><subject>Real time</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEELgjAYQEcQJOV_-KCzoJs26SZldPFS0lWG-4zJdOZm4L_PoB_Q6V3eeyviUcaiII0p3RDf2jYMQ3rgNEmYR4pcPrHIjlAYiRoyKQYnnDI93GfrsIPGjHBDoYNSdQgPJdFA1gs9O1VbWLzvAM74VjXaHVk3Qlv0f9yS_SUvT9dgGM1rQuuq1kzjUtuKpkkcUc4ZZ_9ZH8NHPGE</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Wang, Liang</creator><creator>Zhang, Nan</creator><creator>Qu, Xiaoyang</creator><creator>Wang, Jianzong</creator><creator>Wan, Jiguang</creator><creator>Li, Guokuan</creator><creator>Hu, Kaiyu</creator><creator>Jiang, Guilin</creator><creator>Xiao, Jing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230817</creationdate><title>EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices</title><author>Wang, Liang ; Zhang, Nan ; Qu, Xiaoyang ; Wang, Jianzong ; Wan, Jiguang ; Li, Guokuan ; Hu, Kaiyu ; Jiang, Guilin ; Xiao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28541277373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Drift</topic><topic>Mathematical analysis</topic><topic>Real time</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Qu, Xiaoyang</creatorcontrib><creatorcontrib>Wang, Jianzong</creatorcontrib><creatorcontrib>Wan, Jiguang</creatorcontrib><creatorcontrib>Li, Guokuan</creatorcontrib><creatorcontrib>Hu, Kaiyu</creatorcontrib><creatorcontrib>Jiang, Guilin</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liang</au><au>Zhang, Nan</au><au>Qu, Xiaoyang</au><au>Wang, Jianzong</au><au>Wan, Jiguang</au><au>Li, Guokuan</au><au>Hu, Kaiyu</au><au>Jiang, Guilin</au><au>Xiao, Jing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices</atitle><jtitle>arXiv.org</jtitle><date>2023-08-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2854127737 |
source | Publicly Available Content (ProQuest) |
subjects | Adaptation Artificial neural networks Drift Mathematical analysis Real time Video data |
title | EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EdgeMA:%20Model%20Adaptation%20System%20for%20Real-Time%20Video%20Analytics%20on%20Edge%20Devices&rft.jtitle=arXiv.org&rft.au=Wang,%20Liang&rft.date=2023-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2854127737%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28541277373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854127737&rft_id=info:pmid/&rfr_iscdi=true |