Loading…
N‐doped flexible triazine‐based porous polymer for thermal energy storage
Nitrogen atoms has been widely adopted in preparation of porous organic polymers (POPs). In our study, flexible nitrogen porous organic polymers (FNPOPs) with high nitrogen content are synthesized by using acetic acid both as solvent and catalyst. The materials show moderate Brunauer–Emmett–Teller (...
Saved in:
Published in: | Journal of applied polymer science 2023-10, Vol.140 (37), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2570-3bed4e2a69db9e3374e143ce81e97cc49b1049d9659e7a7c9219ce47727859e83 |
container_end_page | n/a |
container_issue | 37 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 140 |
creator | Jiang, Xiaowei Liu, Zhihong Tan, Yujiao Chen, Xiaosong Huang, Ping Ma, Libo Xiong, Xu Gao, Weibin Tao, Yu Lu, Hongxia Dai, Zheng |
description | Nitrogen atoms has been widely adopted in preparation of porous organic polymers (POPs). In our study, flexible nitrogen porous organic polymers (FNPOPs) with high nitrogen content are synthesized by using acetic acid both as solvent and catalyst. The materials show moderate Brunauer–Emmett–Teller (BET) surface area and outstanding thermal stabilities (Td: 330°C). FNPOP‐2 is prepared into phase change material (PCM) composites by self‐adsorption method. From differential scanning calorimetry (DSC) analysis, the PCM composites show high encapsulation ratio (55.2 wt%) and latent heat (135.7 J g−1) due to flexible structure and high nitrogen atomic content. Furthermore, the thermal energy storage properties of all PCM composites remained after several thermal cycles. In general, FNPOPs have potential applications in phase change materials adsorption and thermal energy storage.
Acetic acid is employed as green solvent and catalyst to synthesis flexible nitrogen porous organic polymers (FNPOPs). The flexible structure and favorable thermal stabilities make FNPOPs potential candidates for thermal energy storage. The phase change material (PCM) composites show high load ratio (55.2 wt%) and enthalpy (135.7 J g−1) because of strong interaction between porous skeletons and PCMs. |
doi_str_mv | 10.1002/app.54400 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854313952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854313952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2570-3bed4e2a69db9e3374e143ce81e97cc49b1049d9659e7a7c9219ce47727859e83</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaRWLFI6984XlYVFKQCXcDacpxJSZXWwU4FYcUROCMnwRC2rD5pvjcz0kPonOAJwZhOTdtOBOcYH6ARwUqmPKP5IRrFjqS5UuIYnYSwwZgQgbMRurv_-vgsXQtlUjXwVhcNJJ2vzXu9g9gUJsSmdd7tQ4ym34JPKueT7hn81jQJ7MCv-yR0zps1nKKjyjQBzv5yjJ6urx7nN-nyYXE7ny1TS4XEKSug5EBNpspCAWOSA-HMQk5ASWu5KgjmqlSZUCCNtIoSZYFLSWUeRzkbo4vhbuvdyx5Cpzdu73fxpaa54IwwJWikLgfKeheCh0q3vt4a32uC9Y8tHW3pX1uRnQ7sa91A_z-oZ6vVsPENcPBtYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854313952</pqid></control><display><type>article</type><title>N‐doped flexible triazine‐based porous polymer for thermal energy storage</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jiang, Xiaowei ; Liu, Zhihong ; Tan, Yujiao ; Chen, Xiaosong ; Huang, Ping ; Ma, Libo ; Xiong, Xu ; Gao, Weibin ; Tao, Yu ; Lu, Hongxia ; Dai, Zheng</creator><creatorcontrib>Jiang, Xiaowei ; Liu, Zhihong ; Tan, Yujiao ; Chen, Xiaosong ; Huang, Ping ; Ma, Libo ; Xiong, Xu ; Gao, Weibin ; Tao, Yu ; Lu, Hongxia ; Dai, Zheng</creatorcontrib><description>Nitrogen atoms has been widely adopted in preparation of porous organic polymers (POPs). In our study, flexible nitrogen porous organic polymers (FNPOPs) with high nitrogen content are synthesized by using acetic acid both as solvent and catalyst. The materials show moderate Brunauer–Emmett–Teller (BET) surface area and outstanding thermal stabilities (Td: 330°C). FNPOP‐2 is prepared into phase change material (PCM) composites by self‐adsorption method. From differential scanning calorimetry (DSC) analysis, the PCM composites show high encapsulation ratio (55.2 wt%) and latent heat (135.7 J g−1) due to flexible structure and high nitrogen atomic content. Furthermore, the thermal energy storage properties of all PCM composites remained after several thermal cycles. In general, FNPOPs have potential applications in phase change materials adsorption and thermal energy storage.
Acetic acid is employed as green solvent and catalyst to synthesis flexible nitrogen porous organic polymers (FNPOPs). The flexible structure and favorable thermal stabilities make FNPOPs potential candidates for thermal energy storage. The phase change material (PCM) composites show high load ratio (55.2 wt%) and enthalpy (135.7 J g−1) because of strong interaction between porous skeletons and PCMs.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54400</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acetic acid ; Adsorption ; Composite materials ; Energy storage ; flexible porous organic polymers ; Flexible structures ; Latent heat ; Materials science ; nitrogen atom ; Nitrogen atoms ; PCM composites ; Phase change materials ; Polymers ; Thermal energy ; thermal energy storage</subject><ispartof>Journal of applied polymer science, 2023-10, Vol.140 (37), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2570-3bed4e2a69db9e3374e143ce81e97cc49b1049d9659e7a7c9219ce47727859e83</cites><orcidid>0000-0003-1413-7991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Xiaowei</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><creatorcontrib>Tan, Yujiao</creatorcontrib><creatorcontrib>Chen, Xiaosong</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Xiong, Xu</creatorcontrib><creatorcontrib>Gao, Weibin</creatorcontrib><creatorcontrib>Tao, Yu</creatorcontrib><creatorcontrib>Lu, Hongxia</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><title>N‐doped flexible triazine‐based porous polymer for thermal energy storage</title><title>Journal of applied polymer science</title><description>Nitrogen atoms has been widely adopted in preparation of porous organic polymers (POPs). In our study, flexible nitrogen porous organic polymers (FNPOPs) with high nitrogen content are synthesized by using acetic acid both as solvent and catalyst. The materials show moderate Brunauer–Emmett–Teller (BET) surface area and outstanding thermal stabilities (Td: 330°C). FNPOP‐2 is prepared into phase change material (PCM) composites by self‐adsorption method. From differential scanning calorimetry (DSC) analysis, the PCM composites show high encapsulation ratio (55.2 wt%) and latent heat (135.7 J g−1) due to flexible structure and high nitrogen atomic content. Furthermore, the thermal energy storage properties of all PCM composites remained after several thermal cycles. In general, FNPOPs have potential applications in phase change materials adsorption and thermal energy storage.
Acetic acid is employed as green solvent and catalyst to synthesis flexible nitrogen porous organic polymers (FNPOPs). The flexible structure and favorable thermal stabilities make FNPOPs potential candidates for thermal energy storage. The phase change material (PCM) composites show high load ratio (55.2 wt%) and enthalpy (135.7 J g−1) because of strong interaction between porous skeletons and PCMs.</description><subject>Acetic acid</subject><subject>Adsorption</subject><subject>Composite materials</subject><subject>Energy storage</subject><subject>flexible porous organic polymers</subject><subject>Flexible structures</subject><subject>Latent heat</subject><subject>Materials science</subject><subject>nitrogen atom</subject><subject>Nitrogen atoms</subject><subject>PCM composites</subject><subject>Phase change materials</subject><subject>Polymers</subject><subject>Thermal energy</subject><subject>thermal energy storage</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaRWLFI6984XlYVFKQCXcDacpxJSZXWwU4FYcUROCMnwRC2rD5pvjcz0kPonOAJwZhOTdtOBOcYH6ARwUqmPKP5IRrFjqS5UuIYnYSwwZgQgbMRurv_-vgsXQtlUjXwVhcNJJ2vzXu9g9gUJsSmdd7tQ4ym34JPKueT7hn81jQJ7MCv-yR0zps1nKKjyjQBzv5yjJ6urx7nN-nyYXE7ny1TS4XEKSug5EBNpspCAWOSA-HMQk5ASWu5KgjmqlSZUCCNtIoSZYFLSWUeRzkbo4vhbuvdyx5Cpzdu73fxpaa54IwwJWikLgfKeheCh0q3vt4a32uC9Y8tHW3pX1uRnQ7sa91A_z-oZ6vVsPENcPBtYQ</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Jiang, Xiaowei</creator><creator>Liu, Zhihong</creator><creator>Tan, Yujiao</creator><creator>Chen, Xiaosong</creator><creator>Huang, Ping</creator><creator>Ma, Libo</creator><creator>Xiong, Xu</creator><creator>Gao, Weibin</creator><creator>Tao, Yu</creator><creator>Lu, Hongxia</creator><creator>Dai, Zheng</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1413-7991</orcidid></search><sort><creationdate>20231005</creationdate><title>N‐doped flexible triazine‐based porous polymer for thermal energy storage</title><author>Jiang, Xiaowei ; Liu, Zhihong ; Tan, Yujiao ; Chen, Xiaosong ; Huang, Ping ; Ma, Libo ; Xiong, Xu ; Gao, Weibin ; Tao, Yu ; Lu, Hongxia ; Dai, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2570-3bed4e2a69db9e3374e143ce81e97cc49b1049d9659e7a7c9219ce47727859e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Adsorption</topic><topic>Composite materials</topic><topic>Energy storage</topic><topic>flexible porous organic polymers</topic><topic>Flexible structures</topic><topic>Latent heat</topic><topic>Materials science</topic><topic>nitrogen atom</topic><topic>Nitrogen atoms</topic><topic>PCM composites</topic><topic>Phase change materials</topic><topic>Polymers</topic><topic>Thermal energy</topic><topic>thermal energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiaowei</creatorcontrib><creatorcontrib>Liu, Zhihong</creatorcontrib><creatorcontrib>Tan, Yujiao</creatorcontrib><creatorcontrib>Chen, Xiaosong</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Xiong, Xu</creatorcontrib><creatorcontrib>Gao, Weibin</creatorcontrib><creatorcontrib>Tao, Yu</creatorcontrib><creatorcontrib>Lu, Hongxia</creatorcontrib><creatorcontrib>Dai, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiaowei</au><au>Liu, Zhihong</au><au>Tan, Yujiao</au><au>Chen, Xiaosong</au><au>Huang, Ping</au><au>Ma, Libo</au><au>Xiong, Xu</au><au>Gao, Weibin</au><au>Tao, Yu</au><au>Lu, Hongxia</au><au>Dai, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‐doped flexible triazine‐based porous polymer for thermal energy storage</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-10-05</date><risdate>2023</risdate><volume>140</volume><issue>37</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Nitrogen atoms has been widely adopted in preparation of porous organic polymers (POPs). In our study, flexible nitrogen porous organic polymers (FNPOPs) with high nitrogen content are synthesized by using acetic acid both as solvent and catalyst. The materials show moderate Brunauer–Emmett–Teller (BET) surface area and outstanding thermal stabilities (Td: 330°C). FNPOP‐2 is prepared into phase change material (PCM) composites by self‐adsorption method. From differential scanning calorimetry (DSC) analysis, the PCM composites show high encapsulation ratio (55.2 wt%) and latent heat (135.7 J g−1) due to flexible structure and high nitrogen atomic content. Furthermore, the thermal energy storage properties of all PCM composites remained after several thermal cycles. In general, FNPOPs have potential applications in phase change materials adsorption and thermal energy storage.
Acetic acid is employed as green solvent and catalyst to synthesis flexible nitrogen porous organic polymers (FNPOPs). The flexible structure and favorable thermal stabilities make FNPOPs potential candidates for thermal energy storage. The phase change material (PCM) composites show high load ratio (55.2 wt%) and enthalpy (135.7 J g−1) because of strong interaction between porous skeletons and PCMs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.54400</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1413-7991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2023-10, Vol.140 (37), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2854313952 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acetic acid Adsorption Composite materials Energy storage flexible porous organic polymers Flexible structures Latent heat Materials science nitrogen atom Nitrogen atoms PCM composites Phase change materials Polymers Thermal energy thermal energy storage |
title | N‐doped flexible triazine‐based porous polymer for thermal energy storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%90doped%20flexible%20triazine%E2%80%90based%20porous%20polymer%20for%20thermal%20energy%20storage&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Jiang,%20Xiaowei&rft.date=2023-10-05&rft.volume=140&rft.issue=37&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54400&rft_dat=%3Cproquest_cross%3E2854313952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2570-3bed4e2a69db9e3374e143ce81e97cc49b1049d9659e7a7c9219ce47727859e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854313952&rft_id=info:pmid/&rfr_iscdi=true |