Loading…

Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)

Ultra-thin layers ( < 8 nm) of a Bi 2Te 3 topological insulator have been grown on GaAs (100) substrates using molecular beam epitaxy. The growth was performed from a single Bi 2Te 3 effusion cell and one source of extra tellurium. Optical and structural characterizations were carried out through...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-08, Vol.134 (8)
Main Authors: Rodrigues, Leonarde N., de Araujo, C. I. L., Mello, S. L. A., Laverock, J., Fonseca, Jakson M., Schwarzacher, W., Inoch, Wesley F., Ferreira, Sukarno O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-5f96c3d505102de77dfe8599ea7577c4695f62e7c2cba892b3ba787673951a0c3
container_end_page
container_issue 8
container_start_page
container_title Journal of applied physics
container_volume 134
creator Rodrigues, Leonarde N.
de Araujo, C. I. L.
Mello, S. L. A.
Laverock, J.
Fonseca, Jakson M.
Schwarzacher, W.
Inoch, Wesley F.
Ferreira, Sukarno O.
description Ultra-thin layers ( < 8 nm) of a Bi 2Te 3 topological insulator have been grown on GaAs (100) substrates using molecular beam epitaxy. The growth was performed from a single Bi 2Te 3 effusion cell and one source of extra tellurium. Optical and structural characterizations were carried out through Raman spectroscopy, x-ray diffraction, atomic force microscopy, and scanning electron microscopy. The topological insulator properties were also investigated by angle-resolved photoelectron spectroscopy. A layer of 5 nm showed Dirac cone-like linear electronic band dispersion, indicating the signature of a topological insulator with the Dirac point having large binding energy relative to the Fermi level as expected for ultra-thin films. Topological insulator properties were also investigated at the initial growth stage where deposition follows an islandlike growth mode. Our results can contribute to the development of practical chalcogenide-based thin-film spintronics devices.
doi_str_mv 10.1063/5.0155332
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854648915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854648915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-5f96c3d505102de77dfe8599ea7577c4695f62e7c2cba892b3ba787673951a0c3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFFhan6aSbKsRatQcFPXw500Y1PSyZhk1L69I-3a1dl8nMs9CF1TMqGk5A9iQqgQnLMTNKJE6UIKQU7RiBBGC6WlPkcXKW0JoVRxPUKwiOE7b3Bo8KNjK8txDl3w4cMZ8Ni1qfeQQ8S9zxGKvHEt9rC3MeEvB3gXvDWDiLi2sMO2cxl-9ji0eAGzhG8pIXeX6KwBn-zVMcfo_flpNX8plm-L1_lsWRimZC5Eo0vD14IIStjaSrlurBJaW5BCSjMttWhKZqVhpgalWc1rkEqWkmtBgRg-RjeH3i6Gz96mXG1DH9vhZMWUmJZTpakY1N1BmRhSirapuuh2EPcVJdXfgpWojgsO9v5gkxn-yi60_-BfOExufQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854648915</pqid></control><display><type>article</type><title>Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rodrigues, Leonarde N. ; de Araujo, C. I. L. ; Mello, S. L. A. ; Laverock, J. ; Fonseca, Jakson M. ; Schwarzacher, W. ; Inoch, Wesley F. ; Ferreira, Sukarno O.</creator><creatorcontrib>Rodrigues, Leonarde N. ; de Araujo, C. I. L. ; Mello, S. L. A. ; Laverock, J. ; Fonseca, Jakson M. ; Schwarzacher, W. ; Inoch, Wesley F. ; Ferreira, Sukarno O.</creatorcontrib><description>Ultra-thin layers ( &lt; 8 nm) of a Bi 2Te 3 topological insulator have been grown on GaAs (100) substrates using molecular beam epitaxy. The growth was performed from a single Bi 2Te 3 effusion cell and one source of extra tellurium. Optical and structural characterizations were carried out through Raman spectroscopy, x-ray diffraction, atomic force microscopy, and scanning electron microscopy. The topological insulator properties were also investigated by angle-resolved photoelectron spectroscopy. A layer of 5 nm showed Dirac cone-like linear electronic band dispersion, indicating the signature of a topological insulator with the Dirac point having large binding energy relative to the Fermi level as expected for ultra-thin films. Topological insulator properties were also investigated at the initial growth stage where deposition follows an islandlike growth mode. Our results can contribute to the development of practical chalcogenide-based thin-film spintronics devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0155332</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Epitaxial growth ; Gallium arsenide ; Microscopy ; Molecular beam epitaxy ; Photoelectrons ; Raman spectroscopy ; Spintronics ; Substrates ; Tellurium ; Thin films ; Topological insulators</subject><ispartof>Journal of applied physics, 2023-08, Vol.134 (8)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-5f96c3d505102de77dfe8599ea7577c4695f62e7c2cba892b3ba787673951a0c3</cites><orcidid>0000-0002-9261-9796 ; 0000-0003-3653-8171 ; 0000-0001-8174-0200 ; 0000-0001-9441-026X ; 0000-0003-2801-1759 ; 0000-0002-1992-5754 ; 0000-0003-0451-0940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rodrigues, Leonarde N.</creatorcontrib><creatorcontrib>de Araujo, C. I. L.</creatorcontrib><creatorcontrib>Mello, S. L. A.</creatorcontrib><creatorcontrib>Laverock, J.</creatorcontrib><creatorcontrib>Fonseca, Jakson M.</creatorcontrib><creatorcontrib>Schwarzacher, W.</creatorcontrib><creatorcontrib>Inoch, Wesley F.</creatorcontrib><creatorcontrib>Ferreira, Sukarno O.</creatorcontrib><title>Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)</title><title>Journal of applied physics</title><description>Ultra-thin layers ( &lt; 8 nm) of a Bi 2Te 3 topological insulator have been grown on GaAs (100) substrates using molecular beam epitaxy. The growth was performed from a single Bi 2Te 3 effusion cell and one source of extra tellurium. Optical and structural characterizations were carried out through Raman spectroscopy, x-ray diffraction, atomic force microscopy, and scanning electron microscopy. The topological insulator properties were also investigated by angle-resolved photoelectron spectroscopy. A layer of 5 nm showed Dirac cone-like linear electronic band dispersion, indicating the signature of a topological insulator with the Dirac point having large binding energy relative to the Fermi level as expected for ultra-thin films. Topological insulator properties were also investigated at the initial growth stage where deposition follows an islandlike growth mode. Our results can contribute to the development of practical chalcogenide-based thin-film spintronics devices.</description><subject>Applied physics</subject><subject>Epitaxial growth</subject><subject>Gallium arsenide</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Photoelectrons</subject><subject>Raman spectroscopy</subject><subject>Spintronics</subject><subject>Substrates</subject><subject>Tellurium</subject><subject>Thin films</subject><subject>Topological insulators</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFFhan6aSbKsRatQcFPXw500Y1PSyZhk1L69I-3a1dl8nMs9CF1TMqGk5A9iQqgQnLMTNKJE6UIKQU7RiBBGC6WlPkcXKW0JoVRxPUKwiOE7b3Bo8KNjK8txDl3w4cMZ8Ni1qfeQQ8S9zxGKvHEt9rC3MeEvB3gXvDWDiLi2sMO2cxl-9ji0eAGzhG8pIXeX6KwBn-zVMcfo_flpNX8plm-L1_lsWRimZC5Eo0vD14IIStjaSrlurBJaW5BCSjMttWhKZqVhpgalWc1rkEqWkmtBgRg-RjeH3i6Gz96mXG1DH9vhZMWUmJZTpakY1N1BmRhSirapuuh2EPcVJdXfgpWojgsO9v5gkxn-yi60_-BfOExufQ</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Rodrigues, Leonarde N.</creator><creator>de Araujo, C. I. L.</creator><creator>Mello, S. L. A.</creator><creator>Laverock, J.</creator><creator>Fonseca, Jakson M.</creator><creator>Schwarzacher, W.</creator><creator>Inoch, Wesley F.</creator><creator>Ferreira, Sukarno O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9261-9796</orcidid><orcidid>https://orcid.org/0000-0003-3653-8171</orcidid><orcidid>https://orcid.org/0000-0001-8174-0200</orcidid><orcidid>https://orcid.org/0000-0001-9441-026X</orcidid><orcidid>https://orcid.org/0000-0003-2801-1759</orcidid><orcidid>https://orcid.org/0000-0002-1992-5754</orcidid><orcidid>https://orcid.org/0000-0003-0451-0940</orcidid></search><sort><creationdate>20230828</creationdate><title>Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)</title><author>Rodrigues, Leonarde N. ; de Araujo, C. I. L. ; Mello, S. L. A. ; Laverock, J. ; Fonseca, Jakson M. ; Schwarzacher, W. ; Inoch, Wesley F. ; Ferreira, Sukarno O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-5f96c3d505102de77dfe8599ea7577c4695f62e7c2cba892b3ba787673951a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Epitaxial growth</topic><topic>Gallium arsenide</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Photoelectrons</topic><topic>Raman spectroscopy</topic><topic>Spintronics</topic><topic>Substrates</topic><topic>Tellurium</topic><topic>Thin films</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Leonarde N.</creatorcontrib><creatorcontrib>de Araujo, C. I. L.</creatorcontrib><creatorcontrib>Mello, S. L. A.</creatorcontrib><creatorcontrib>Laverock, J.</creatorcontrib><creatorcontrib>Fonseca, Jakson M.</creatorcontrib><creatorcontrib>Schwarzacher, W.</creatorcontrib><creatorcontrib>Inoch, Wesley F.</creatorcontrib><creatorcontrib>Ferreira, Sukarno O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Leonarde N.</au><au>de Araujo, C. I. L.</au><au>Mello, S. L. A.</au><au>Laverock, J.</au><au>Fonseca, Jakson M.</au><au>Schwarzacher, W.</au><au>Inoch, Wesley F.</au><au>Ferreira, Sukarno O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)</atitle><jtitle>Journal of applied physics</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>134</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Ultra-thin layers ( &lt; 8 nm) of a Bi 2Te 3 topological insulator have been grown on GaAs (100) substrates using molecular beam epitaxy. The growth was performed from a single Bi 2Te 3 effusion cell and one source of extra tellurium. Optical and structural characterizations were carried out through Raman spectroscopy, x-ray diffraction, atomic force microscopy, and scanning electron microscopy. The topological insulator properties were also investigated by angle-resolved photoelectron spectroscopy. A layer of 5 nm showed Dirac cone-like linear electronic band dispersion, indicating the signature of a topological insulator with the Dirac point having large binding energy relative to the Fermi level as expected for ultra-thin films. Topological insulator properties were also investigated at the initial growth stage where deposition follows an islandlike growth mode. Our results can contribute to the development of practical chalcogenide-based thin-film spintronics devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0155332</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9261-9796</orcidid><orcidid>https://orcid.org/0000-0003-3653-8171</orcidid><orcidid>https://orcid.org/0000-0001-8174-0200</orcidid><orcidid>https://orcid.org/0000-0001-9441-026X</orcidid><orcidid>https://orcid.org/0000-0003-2801-1759</orcidid><orcidid>https://orcid.org/0000-0002-1992-5754</orcidid><orcidid>https://orcid.org/0000-0003-0451-0940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-08, Vol.134 (8)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2854648915
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Epitaxial growth
Gallium arsenide
Microscopy
Molecular beam epitaxy
Photoelectrons
Raman spectroscopy
Spintronics
Substrates
Tellurium
Thin films
Topological insulators
title Growth of Bi2Te3 topological insulator ultra-thin layers via molecular beam epitaxy on GaAs (100)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Bi2Te3%20topological%20insulator%20ultra-thin%20layers%20via%20molecular%20beam%20epitaxy%20on%20GaAs%20(100)&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Rodrigues,%20Leonarde%20N.&rft.date=2023-08-28&rft.volume=134&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0155332&rft_dat=%3Cproquest_cross%3E2854648915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-5f96c3d505102de77dfe8599ea7577c4695f62e7c2cba892b3ba787673951a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854648915&rft_id=info:pmid/&rfr_iscdi=true