Loading…

Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas

Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investi...

Full description

Saved in:
Bibliographic Details
Published in:European food research & technology 2023-09, Vol.249 (9), p.2287-2297
Main Authors: El Orche, Aimen, Johnson, Joel B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3
cites cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3
container_end_page 2297
container_issue 9
container_start_page 2287
container_title European food research & technology
container_volume 249
creator El Orche, Aimen
Johnson, Joel B.
description Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.
doi_str_mv 10.1007/s00217-023-04300-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854677225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854677225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7-AU8Bz9F8tJv2KOLHgiiInsN0mux26SY1yQr-FP-t0YrevMzM4XnfYeYtilPOzjlj6iIyJriiTEjKSskYFXvFjJeypkLW1f7vrNRhcRTjhrGqWfByVnws3ZuJqV9B6r0j3pIxGDoGjybG3q3Iw_KJxNFgCj6iH3skHSQg4DqCA2TG9jhpYVj50Kf1NhLrA0lrQyzERPrOuPSH5RW49ugHSIaiz7UjowG3S_HbNe6GBA7icXFgYYjm5KfPi5eb6-erO3r_eLu8urynKHmTKBdg6g64FFYxwAbbrm0Ra1i0bWVqrBolOmFaMJ1lixJkZRtUCEIy4LW1cl6cTb756Ndd_oXe-F1weaUWdVUulBKiypSYKMx_iMFYPYZ-C-Fdc6a_ItBTBDpHoL8j0CKL5CSKGXYrE_6s_1F9Aiykjt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854677225</pqid></control><display><type>article</type><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>El Orche, Aimen ; Johnson, Joel B.</creator><creatorcontrib>El Orche, Aimen ; Johnson, Joel B.</creatorcontrib><description>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</description><identifier>ISSN: 1438-2377</identifier><identifier>EISSN: 1438-2385</identifier><identifier>DOI: 10.1007/s00217-023-04300-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Algorithms ; Analytical Chemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chocolate ; Classification ; Coatings ; Confectionery ; Data analysis ; Discriminant analysis ; Food ; Food Science ; Forestry ; Infrared spectra ; Infrared spectroscopy ; Investigations ; Machine learning ; Manufacturers ; Near infrared radiation ; Nuts ; Optimization ; Original Paper ; Peanuts ; Principal components analysis ; Quality assurance ; Quality control ; Spectrum analysis ; Support vector machines</subject><ispartof>European food research &amp; technology, 2023-09, Vol.249 (9), p.2287-2297</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</citedby><cites>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2854677225/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2854677225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>El Orche, Aimen</creatorcontrib><creatorcontrib>Johnson, Joel B.</creatorcontrib><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><title>European food research &amp; technology</title><addtitle>Eur Food Res Technol</addtitle><description>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chocolate</subject><subject>Classification</subject><subject>Coatings</subject><subject>Confectionery</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Food</subject><subject>Food Science</subject><subject>Forestry</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Manufacturers</subject><subject>Near infrared radiation</subject><subject>Nuts</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Peanuts</subject><subject>Principal components analysis</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1438-2377</issn><issn>1438-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1LxDAQhosouK7-AU8Bz9F8tJv2KOLHgiiInsN0mux26SY1yQr-FP-t0YrevMzM4XnfYeYtilPOzjlj6iIyJriiTEjKSskYFXvFjJeypkLW1f7vrNRhcRTjhrGqWfByVnws3ZuJqV9B6r0j3pIxGDoGjybG3q3Iw_KJxNFgCj6iH3skHSQg4DqCA2TG9jhpYVj50Kf1NhLrA0lrQyzERPrOuPSH5RW49ugHSIaiz7UjowG3S_HbNe6GBA7icXFgYYjm5KfPi5eb6-erO3r_eLu8urynKHmTKBdg6g64FFYxwAbbrm0Ra1i0bWVqrBolOmFaMJ1lixJkZRtUCEIy4LW1cl6cTb756Ndd_oXe-F1weaUWdVUulBKiypSYKMx_iMFYPYZ-C-Fdc6a_ItBTBDpHoL8j0CKL5CSKGXYrE_6s_1F9Aiykjt8</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>El Orche, Aimen</creator><creator>Johnson, Joel B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><author>El Orche, Aimen ; Johnson, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chocolate</topic><topic>Classification</topic><topic>Coatings</topic><topic>Confectionery</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Food</topic><topic>Food Science</topic><topic>Forestry</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Manufacturers</topic><topic>Near infrared radiation</topic><topic>Nuts</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Peanuts</topic><topic>Principal components analysis</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Orche, Aimen</creatorcontrib><creatorcontrib>Johnson, Joel B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European food research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Orche, Aimen</au><au>Johnson, Joel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</atitle><jtitle>European food research &amp; technology</jtitle><stitle>Eur Food Res Technol</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>249</volume><issue>9</issue><spage>2287</spage><epage>2297</epage><pages>2287-2297</pages><issn>1438-2377</issn><eissn>1438-2385</eissn><abstract>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00217-023-04300-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-2377
ispartof European food research & technology, 2023-09, Vol.249 (9), p.2287-2297
issn 1438-2377
1438-2385
language eng
recordid cdi_proquest_journals_2854677225
source ABI/INFORM Global; Springer Link
subjects Agriculture
Algorithms
Analytical Chemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Chocolate
Classification
Coatings
Confectionery
Data analysis
Discriminant analysis
Food
Food Science
Forestry
Infrared spectra
Infrared spectroscopy
Investigations
Machine learning
Manufacturers
Near infrared radiation
Nuts
Optimization
Original Paper
Peanuts
Principal components analysis
Quality assurance
Quality control
Spectrum analysis
Support vector machines
title Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20pre-processing%20NIR%20spectroscopic%20data%20and%20classification%20algorithms%20for%20the%20fast%20identification%20of%20chocolate-coated%20peanuts%20and%20sultanas&rft.jtitle=European%20food%20research%20&%20technology&rft.au=El%20Orche,%20Aimen&rft.date=2023-09-01&rft.volume=249&rft.issue=9&rft.spage=2287&rft.epage=2297&rft.pages=2287-2297&rft.issn=1438-2377&rft.eissn=1438-2385&rft_id=info:doi/10.1007/s00217-023-04300-2&rft_dat=%3Cproquest_cross%3E2854677225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854677225&rft_id=info:pmid/&rfr_iscdi=true