Loading…
Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas
Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investi...
Saved in:
Published in: | European food research & technology 2023-09, Vol.249 (9), p.2287-2297 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3 |
container_end_page | 2297 |
container_issue | 9 |
container_start_page | 2287 |
container_title | European food research & technology |
container_volume | 249 |
creator | El Orche, Aimen Johnson, Joel B. |
description | Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods. |
doi_str_mv | 10.1007/s00217-023-04300-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854677225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854677225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7-AU8Bz9F8tJv2KOLHgiiInsN0mux26SY1yQr-FP-t0YrevMzM4XnfYeYtilPOzjlj6iIyJriiTEjKSskYFXvFjJeypkLW1f7vrNRhcRTjhrGqWfByVnws3ZuJqV9B6r0j3pIxGDoGjybG3q3Iw_KJxNFgCj6iH3skHSQg4DqCA2TG9jhpYVj50Kf1NhLrA0lrQyzERPrOuPSH5RW49ugHSIaiz7UjowG3S_HbNe6GBA7icXFgYYjm5KfPi5eb6-erO3r_eLu8urynKHmTKBdg6g64FFYxwAbbrm0Ra1i0bWVqrBolOmFaMJ1lixJkZRtUCEIy4LW1cl6cTb756Ndd_oXe-F1weaUWdVUulBKiypSYKMx_iMFYPYZ-C-Fdc6a_ItBTBDpHoL8j0CKL5CSKGXYrE_6s_1F9Aiykjt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854677225</pqid></control><display><type>article</type><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>El Orche, Aimen ; Johnson, Joel B.</creator><creatorcontrib>El Orche, Aimen ; Johnson, Joel B.</creatorcontrib><description>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</description><identifier>ISSN: 1438-2377</identifier><identifier>EISSN: 1438-2385</identifier><identifier>DOI: 10.1007/s00217-023-04300-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Algorithms ; Analytical Chemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chocolate ; Classification ; Coatings ; Confectionery ; Data analysis ; Discriminant analysis ; Food ; Food Science ; Forestry ; Infrared spectra ; Infrared spectroscopy ; Investigations ; Machine learning ; Manufacturers ; Near infrared radiation ; Nuts ; Optimization ; Original Paper ; Peanuts ; Principal components analysis ; Quality assurance ; Quality control ; Spectrum analysis ; Support vector machines</subject><ispartof>European food research & technology, 2023-09, Vol.249 (9), p.2287-2297</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</citedby><cites>FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2854677225/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2854677225?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>El Orche, Aimen</creatorcontrib><creatorcontrib>Johnson, Joel B.</creatorcontrib><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><title>European food research & technology</title><addtitle>Eur Food Res Technol</addtitle><description>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chocolate</subject><subject>Classification</subject><subject>Coatings</subject><subject>Confectionery</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Food</subject><subject>Food Science</subject><subject>Forestry</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Manufacturers</subject><subject>Near infrared radiation</subject><subject>Nuts</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Peanuts</subject><subject>Principal components analysis</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1438-2377</issn><issn>1438-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1LxDAQhosouK7-AU8Bz9F8tJv2KOLHgiiInsN0mux26SY1yQr-FP-t0YrevMzM4XnfYeYtilPOzjlj6iIyJriiTEjKSskYFXvFjJeypkLW1f7vrNRhcRTjhrGqWfByVnws3ZuJqV9B6r0j3pIxGDoGjybG3q3Iw_KJxNFgCj6iH3skHSQg4DqCA2TG9jhpYVj50Kf1NhLrA0lrQyzERPrOuPSH5RW49ugHSIaiz7UjowG3S_HbNe6GBA7icXFgYYjm5KfPi5eb6-erO3r_eLu8urynKHmTKBdg6g64FFYxwAbbrm0Ra1i0bWVqrBolOmFaMJ1lixJkZRtUCEIy4LW1cl6cTb756Ndd_oXe-F1weaUWdVUulBKiypSYKMx_iMFYPYZ-C-Fdc6a_ItBTBDpHoL8j0CKL5CSKGXYrE_6s_1F9Aiykjt8</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>El Orche, Aimen</creator><creator>Johnson, Joel B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</title><author>El Orche, Aimen ; Johnson, Joel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chocolate</topic><topic>Classification</topic><topic>Coatings</topic><topic>Confectionery</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Food</topic><topic>Food Science</topic><topic>Forestry</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Manufacturers</topic><topic>Near infrared radiation</topic><topic>Nuts</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Peanuts</topic><topic>Principal components analysis</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Orche, Aimen</creatorcontrib><creatorcontrib>Johnson, Joel B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European food research & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Orche, Aimen</au><au>Johnson, Joel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas</atitle><jtitle>European food research & technology</jtitle><stitle>Eur Food Res Technol</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>249</volume><issue>9</issue><spage>2287</spage><epage>2297</epage><pages>2287-2297</pages><issn>1438-2377</issn><eissn>1438-2385</eissn><abstract>Chocolate-coated confectionery, including fruits and nuts, is an increasingly popular snack food. Non-destructive discrimination of the core composition could be useful for quality assurance purposes, such as ensuring the absence of peanuts in a batch of chocolate-coated sultanas. This study investigated the optimum pre-processing methods and discrimination algorithms for identifying chocolate-coated peanuts and sultanas from their near-infrared (NIR) spectra. The best-performing results were found using partial least squares discriminant analysis (PLS-DA) and principal component analysis with linear discriminant analysis (PCA-LDA), which both demonstrated 100% classification accuracy when applied to the validation set. Principal component analysis with support vector machine (PCA-SVM) showed slightly poorer results, particularly when using non-optimal pre-processing techniques. In general, the most accurate results were found when using either the unprocessed or SNV-processed spectral data. This work supports the prospect of using near-infrared spectroscopy for the quality assurance in the manufacture or wholesale of panned chocolate goods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00217-023-04300-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-2377 |
ispartof | European food research & technology, 2023-09, Vol.249 (9), p.2287-2297 |
issn | 1438-2377 1438-2385 |
language | eng |
recordid | cdi_proquest_journals_2854677225 |
source | ABI/INFORM Global; Springer Link |
subjects | Agriculture Algorithms Analytical Chemistry Biotechnology Chemistry Chemistry and Materials Science Chocolate Classification Coatings Confectionery Data analysis Discriminant analysis Food Food Science Forestry Infrared spectra Infrared spectroscopy Investigations Machine learning Manufacturers Near infrared radiation Nuts Optimization Original Paper Peanuts Principal components analysis Quality assurance Quality control Spectrum analysis Support vector machines |
title | Investigation of pre-processing NIR spectroscopic data and classification algorithms for the fast identification of chocolate-coated peanuts and sultanas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20pre-processing%20NIR%20spectroscopic%20data%20and%20classification%20algorithms%20for%20the%20fast%20identification%20of%20chocolate-coated%20peanuts%20and%20sultanas&rft.jtitle=European%20food%20research%20&%20technology&rft.au=El%20Orche,%20Aimen&rft.date=2023-09-01&rft.volume=249&rft.issue=9&rft.spage=2287&rft.epage=2297&rft.pages=2287-2297&rft.issn=1438-2377&rft.eissn=1438-2385&rft_id=info:doi/10.1007/s00217-023-04300-2&rft_dat=%3Cproquest_cross%3E2854677225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-12ae8da132f70ac9cbdbbcc8a6bb5e8c5972d2ebaedf064a35f9c7ca230a18ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854677225&rft_id=info:pmid/&rfr_iscdi=true |