Loading…

Effect of W Content on Microstructure and Properties of Laser Cladding CoCrFeNi HEA Coating

The 316L SS surfaces were prepared with CoCrFeNi HEA/W-composite coatings using the laser cladding technique with various mass fractions of W. The mass fractions of W were 10, 20, 30, and 40%. The microstructure of the HEA/W-composite coatings was investigated using a variety of characterization met...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2023-08, Vol.13 (8), p.1301
Main Authors: Luo, Fangyan, Yang, Tuchuan, Zhao, Yang, Xiong, Zhengye, Huang, Jiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 316L SS surfaces were prepared with CoCrFeNi HEA/W-composite coatings using the laser cladding technique with various mass fractions of W. The mass fractions of W were 10, 20, 30, and 40%. The microstructure of the HEA/W-composite coatings was investigated using a variety of characterization methods. According to the results, the samples were in the BBC phase. In the SEM images, a solid–liquid bonding layer was observed, which indicates the samples had good metallurgical bonding. The W particles prevented the orderly growth of the HEA grains, and a significant refinement of the grains around the W particles occurred. The lattice constants measured by XRD mapping indicate that adding W particles to CoCrFeNi HEA leads to lattice distortion. The hardness of the HEA/W coatings was substantially higher than the substrate and the pure CoCrFeNi coating by hardness measurements and was greatest at a W content of 40%. The hardness of the HEA/W coatings was significantly increased compared to the substrate and the pure CoCrFeNi coating by hardness measurements and was greatest at a W content of 40%. The HEA/W coating was tested for electrochemical corrosion, and a 10% mass fraction of W achieved the highest level of corrosion resistance.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13081301