Loading…
Highly sensitive detection of methyl parathion based on morning glory-like porous carbon nanosheets modified electrochemical sensor
In this work, we proposed a template-free synthesis strategy for the preparation of morning glory-like porous carbon nanosheets (MGPCS) with three-dimensional (3D) interconnected porous carbon structure, which was applied to modify the glassy carbon electrode (GCE) for the fabrication of methyl para...
Saved in:
Published in: | Journal of porous materials 2023-10, Vol.30 (5), p.1533-1542 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we proposed a template-free synthesis strategy for the preparation of morning glory-like porous carbon nanosheets (MGPCS) with three-dimensional (3D) interconnected porous carbon structure, which was applied to modify the glassy carbon electrode (GCE) for the fabrication of methyl parathion (MP) electrochemical sensor (MGPCS/GCE). MGPCS was successfully prepared by a template-free synthesis strategy with sodium citrate as carbon source. Benefitting from the high-temperature thermal decomposition and acid treatment process, the sodium citrate-derived MGPCS sample presented 3D interconnected morning glory-like porous carbon structure with good electrical conductivity, which provided more efficient charge transfer channels. In particular, the morning glory-like surface morphology significantly increased the specific surface area and adsorption capacity of sensing electrode. Under the optimal conditions, the fabricated MGPCS/GCE sensor showed highly sensitive MP detection property with low limit of detection of 10.7 nM (Linear MP concentration: 0.1–15 µM). Moreover, the fabricated sensor presented good reproducibility, repeatability, stability, and selectivity. The good practical performance of the MGPCS/GCE sensor was confirmed by detecting the MP amount in apple juice and peach juice samples. |
---|---|
ISSN: | 1380-2224 1573-4854 |
DOI: | 10.1007/s10934-023-01439-x |