Loading…

FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES

Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut( F n ), n < ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X s such that Aut( F n ) embeds into Aut( X ). For n ≥ 3, this implies nonlinear...

Full description

Saved in:
Bibliographic Details
Published in:Transformation groups 2023-09, Vol.28 (3), p.1277-1297
Main Author: POPOV, VLADIMIR L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-48bd6a888c77d7287a52c29efba85b361a1399c220ab0feaab005ebd0bfab8233
container_end_page 1297
container_issue 3
container_start_page 1277
container_title Transformation groups
container_volume 28
creator POPOV, VLADIMIR L.
description Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut( F n ), n < ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X s such that Aut( F n ) embeds into Aut( X ). For n ≥ 3, this implies nonlinearity, and for n ≥ 2, the existence of F 2 in Aut( X ) (hence nonamenability of the latter) for X ∈ F . We find in F two infinite subfamilies N and R consisting of irreducible affine varieties such that every X ∈ N is nonrational (and even not stably rational), while every X ∈ F is rational and 3 n -dimensional. As an application, we show that the minimal dimension of affine algebraic varieties Z , for which Aut( Z ) contains the braid group B n on n strands, does not exceed 3 n . This upper bound significantly strengthens the one following from the paper by D. Krammer [Kr02], where the linearity of B n was proved (this latter bound is quadratic in n ). The same upper bound also holds for Aut( F n ). In particular, it shows that the minimal rank of the Cremona groups containing Aut( F n ), does not exceed 3 n , and the same is true for B n .
doi_str_mv 10.1007/s00031-023-09819-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856980474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856980474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-48bd6a888c77d7287a52c29efba85b361a1399c220ab0feaab005ebd0bfab8233</originalsourceid><addsrcrecordid>eNp9kE9PgzAYxhujiXP6BTyReEbfttCWIxLYSNhYGBhvTcvAuOg22-2wb786jN68vP_yPM-b_BC6x_CIAfiTBQCKfSDUh0jgyD9eoBEO3SkU7PXSzSCoH1BGrtGNtWsAzBljIzTL4ryeZk3hxUmdl_OlV2Ze3NTlrKwW03w58yZV2SzO56xK09917sXFJH2u4jzxXuIqT-s8Xd6iq1592O7up49Rk6V1MvWLcpInceG3hMPeD4ReMSWEaDlfcSK4CklLoq7XSoSaMqwwjaKWEFAa-k65CmGnV6B7pQWhdIwehtyd2X4dOruX6-3BbNxLSUTIIgEBD5yKDKrWbK01XS935v1TmaPEIL-xyQGbdNjkGZs8OhMdTNaJN2-d-Yv-x3UCy-BppA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856980474</pqid></control><display><type>article</type><title>FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES</title><source>Springer Nature</source><creator>POPOV, VLADIMIR L.</creator><creatorcontrib>POPOV, VLADIMIR L.</creatorcontrib><description>Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut( F n ), n &lt; ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X s such that Aut( F n ) embeds into Aut( X ). For n ≥ 3, this implies nonlinearity, and for n ≥ 2, the existence of F 2 in Aut( X ) (hence nonamenability of the latter) for X ∈ F . We find in F two infinite subfamilies N and R consisting of irreducible affine varieties such that every X ∈ N is nonrational (and even not stably rational), while every X ∈ F is rational and 3 n -dimensional. As an application, we show that the minimal dimension of affine algebraic varieties Z , for which Aut( Z ) contains the braid group B n on n strands, does not exceed 3 n . This upper bound significantly strengthens the one following from the paper by D. Krammer [Kr02], where the linearity of B n was proved (this latter bound is quadratic in n ). The same upper bound also holds for Aut( F n ). In particular, it shows that the minimal rank of the Cremona groups containing Aut( F n ), does not exceed 3 n , and the same is true for B n .</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-023-09819-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Automorphisms ; Braid theory ; Group theory ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Topological Groups ; Upper bounds</subject><ispartof>Transformation groups, 2023-09, Vol.28 (3), p.1277-1297</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-48bd6a888c77d7287a52c29efba85b361a1399c220ab0feaab005ebd0bfab8233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>POPOV, VLADIMIR L.</creatorcontrib><title>FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut( F n ), n &lt; ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X s such that Aut( F n ) embeds into Aut( X ). For n ≥ 3, this implies nonlinearity, and for n ≥ 2, the existence of F 2 in Aut( X ) (hence nonamenability of the latter) for X ∈ F . We find in F two infinite subfamilies N and R consisting of irreducible affine varieties such that every X ∈ N is nonrational (and even not stably rational), while every X ∈ F is rational and 3 n -dimensional. As an application, we show that the minimal dimension of affine algebraic varieties Z , for which Aut( Z ) contains the braid group B n on n strands, does not exceed 3 n . This upper bound significantly strengthens the one following from the paper by D. Krammer [Kr02], where the linearity of B n was proved (this latter bound is quadratic in n ). The same upper bound also holds for Aut( F n ). In particular, it shows that the minimal rank of the Cremona groups containing Aut( F n ), does not exceed 3 n , and the same is true for B n .</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Braid theory</subject><subject>Group theory</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><subject>Upper bounds</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PgzAYxhujiXP6BTyReEbfttCWIxLYSNhYGBhvTcvAuOg22-2wb786jN68vP_yPM-b_BC6x_CIAfiTBQCKfSDUh0jgyD9eoBEO3SkU7PXSzSCoH1BGrtGNtWsAzBljIzTL4ryeZk3hxUmdl_OlV2Ze3NTlrKwW03w58yZV2SzO56xK09917sXFJH2u4jzxXuIqT-s8Xd6iq1592O7up49Rk6V1MvWLcpInceG3hMPeD4ReMSWEaDlfcSK4CklLoq7XSoSaMqwwjaKWEFAa-k65CmGnV6B7pQWhdIwehtyd2X4dOruX6-3BbNxLSUTIIgEBD5yKDKrWbK01XS935v1TmaPEIL-xyQGbdNjkGZs8OhMdTNaJN2-d-Yv-x3UCy-BppA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>POPOV, VLADIMIR L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES</title><author>POPOV, VLADIMIR L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-48bd6a888c77d7287a52c29efba85b361a1399c220ab0feaab005ebd0bfab8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Braid theory</topic><topic>Group theory</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POPOV, VLADIMIR L.</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POPOV, VLADIMIR L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>28</volume><issue>3</issue><spage>1277</spage><epage>1297</epage><pages>1277-1297</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>Considering a certain construction of algebraic varieties X endowed with an algebraic action of the group Aut( F n ), n &lt; ∞, we obtain a criterion for the faithfulness of this action. It gives an infinite family F of X s such that Aut( F n ) embeds into Aut( X ). For n ≥ 3, this implies nonlinearity, and for n ≥ 2, the existence of F 2 in Aut( X ) (hence nonamenability of the latter) for X ∈ F . We find in F two infinite subfamilies N and R consisting of irreducible affine varieties such that every X ∈ N is nonrational (and even not stably rational), while every X ∈ F is rational and 3 n -dimensional. As an application, we show that the minimal dimension of affine algebraic varieties Z , for which Aut( Z ) contains the braid group B n on n strands, does not exceed 3 n . This upper bound significantly strengthens the one following from the paper by D. Krammer [Kr02], where the linearity of B n was proved (this latter bound is quadratic in n ). The same upper bound also holds for Aut( F n ). In particular, it shows that the minimal rank of the Cremona groups containing Aut( F n ), does not exceed 3 n , and the same is true for B n .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-023-09819-y</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2023-09, Vol.28 (3), p.1277-1297
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_2856980474
source Springer Nature
subjects Algebra
Automorphisms
Braid theory
Group theory
Lie Groups
Mathematics
Mathematics and Statistics
Topological Groups
Upper bounds
title FAITHFUL ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS ON ALGEBRAIC VARIETIES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAITHFUL%20ACTIONS%20OF%20AUTOMORPHISM%20GROUPS%20OF%20FREE%20GROUPS%20ON%20ALGEBRAIC%20VARIETIES&rft.jtitle=Transformation%20groups&rft.au=POPOV,%20VLADIMIR%20L.&rft.date=2023-09-01&rft.volume=28&rft.issue=3&rft.spage=1277&rft.epage=1297&rft.pages=1277-1297&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-023-09819-y&rft_dat=%3Cproquest_cross%3E2856980474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-48bd6a888c77d7287a52c29efba85b361a1399c220ab0feaab005ebd0bfab8233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856980474&rft_id=info:pmid/&rfr_iscdi=true