Loading…
Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools
With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and stor...
Saved in:
Published in: | Electronics (Basel) 2023-08, Vol.12 (16), p.3387 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3 |
container_end_page | |
container_issue | 16 |
container_start_page | 3387 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Hu, Weiqi Zhou, Huicheng Yang, Jianzhong Hui, Enming Dai, Chaoren |
description | With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient. |
doi_str_mv | 10.3390/electronics12163387 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857006547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762474302</galeid><sourcerecordid>A762474302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</originalsourceid><addsrcrecordid>eNptUUtLAzEQXkTBUvsLvAQ8b81js0mOZVsfUBWlnpc0m21Tt8mapAX99aZWxIPzHeabYb55MFl2ieCYEAGvdadV9M4aFRBGJSGcnWQDDJnIBRb49A8_z0YhbGAygQgncJC9TRrZR7PX4HknbTSfMhpnwYu0Kw2mZm_CIVxotbbmfadB6zyY_Q4ElbOJdWAqo0zBtvc6fCuMBdVjBR6kWhurwcK5LlxkZ63sgh79-GH2ejNbVHf5_On2vprMc0UQijmnVBS8ULxN0LQRlC95s1wWlBJSYgYhpawlKN2OqKKSIyKFKLlgGHJOGzLMro59e-_SziHWG7fzNo2sMadJX9KCparxsWolO10b27ropUpo9NYoZ3VrUn7CSlywgkCcBOQoUN6F4HVb995spf-oEawPn6j_-QT5As2jfaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857006547</pqid></control><display><type>article</type><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><source>Publicly Available Content Database</source><creator>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</creator><creatorcontrib>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</creatorcontrib><description>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12163387</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive control ; Algorithms ; Artificial intelligence ; Big Data ; Control data (computers) ; Data acquisition ; Data collection ; Data compression ; Data points ; Data transmission ; Digital twins ; Efficiency ; Electronic control ; Fourier transforms ; Heat of transformation ; Industry 4.0 ; Internet of Things ; Machine tools ; Manufacturing ; Massive data points ; Methods ; New technology ; Numerical control ; Numerical controls ; Signal processing ; Technical services ; Wavelet transforms ; Working conditions</subject><ispartof>Electronics (Basel), 2023-08, Vol.12 (16), p.3387</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</cites><orcidid>0009-0004-4777-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857006547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857006547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Hu, Weiqi</creatorcontrib><creatorcontrib>Zhou, Huicheng</creatorcontrib><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Hui, Enming</creatorcontrib><creatorcontrib>Dai, Chaoren</creatorcontrib><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><title>Electronics (Basel)</title><description>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</description><subject>Accuracy</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Control data (computers)</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data compression</subject><subject>Data points</subject><subject>Data transmission</subject><subject>Digital twins</subject><subject>Efficiency</subject><subject>Electronic control</subject><subject>Fourier transforms</subject><subject>Heat of transformation</subject><subject>Industry 4.0</subject><subject>Internet of Things</subject><subject>Machine tools</subject><subject>Manufacturing</subject><subject>Massive data points</subject><subject>Methods</subject><subject>New technology</subject><subject>Numerical control</subject><subject>Numerical controls</subject><subject>Signal processing</subject><subject>Technical services</subject><subject>Wavelet transforms</subject><subject>Working conditions</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUUtLAzEQXkTBUvsLvAQ8b81js0mOZVsfUBWlnpc0m21Tt8mapAX99aZWxIPzHeabYb55MFl2ieCYEAGvdadV9M4aFRBGJSGcnWQDDJnIBRb49A8_z0YhbGAygQgncJC9TRrZR7PX4HknbTSfMhpnwYu0Kw2mZm_CIVxotbbmfadB6zyY_Q4ElbOJdWAqo0zBtvc6fCuMBdVjBR6kWhurwcK5LlxkZ63sgh79-GH2ejNbVHf5_On2vprMc0UQijmnVBS8ULxN0LQRlC95s1wWlBJSYgYhpawlKN2OqKKSIyKFKLlgGHJOGzLMro59e-_SziHWG7fzNo2sMadJX9KCparxsWolO10b27ropUpo9NYoZ3VrUn7CSlywgkCcBOQoUN6F4HVb995spf-oEawPn6j_-QT5As2jfaY</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hu, Weiqi</creator><creator>Zhou, Huicheng</creator><creator>Yang, Jianzhong</creator><creator>Hui, Enming</creator><creator>Dai, Chaoren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0004-4777-3278</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><author>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Control data (computers)</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data compression</topic><topic>Data points</topic><topic>Data transmission</topic><topic>Digital twins</topic><topic>Efficiency</topic><topic>Electronic control</topic><topic>Fourier transforms</topic><topic>Heat of transformation</topic><topic>Industry 4.0</topic><topic>Internet of Things</topic><topic>Machine tools</topic><topic>Manufacturing</topic><topic>Massive data points</topic><topic>Methods</topic><topic>New technology</topic><topic>Numerical control</topic><topic>Numerical controls</topic><topic>Signal processing</topic><topic>Technical services</topic><topic>Wavelet transforms</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Weiqi</creatorcontrib><creatorcontrib>Zhou, Huicheng</creatorcontrib><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Hui, Enming</creatorcontrib><creatorcontrib>Dai, Chaoren</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Weiqi</au><au>Zhou, Huicheng</au><au>Yang, Jianzhong</au><au>Hui, Enming</au><au>Dai, Chaoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>16</issue><spage>3387</spage><pages>3387-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12163387</doi><orcidid>https://orcid.org/0009-0004-4777-3278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-08, Vol.12 (16), p.3387 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2857006547 |
source | Publicly Available Content Database |
subjects | Accuracy Adaptive control Algorithms Artificial intelligence Big Data Control data (computers) Data acquisition Data collection Data compression Data points Data transmission Digital twins Efficiency Electronic control Fourier transforms Heat of transformation Industry 4.0 Internet of Things Machine tools Manufacturing Massive data points Methods New technology Numerical control Numerical controls Signal processing Technical services Wavelet transforms Working conditions |
title | Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Quantization%20Range%20Division%20Technique%20for%20Electronic%20Control%20Data%20Compression%20in%20CNC%20Machine%20Tools&rft.jtitle=Electronics%20(Basel)&rft.au=Hu,%20Weiqi&rft.date=2023-08-01&rft.volume=12&rft.issue=16&rft.spage=3387&rft.pages=3387-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12163387&rft_dat=%3Cgale_proqu%3EA762474302%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857006547&rft_id=info:pmid/&rft_galeid=A762474302&rfr_iscdi=true |