Loading…

Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools

With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and stor...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-08, Vol.12 (16), p.3387
Main Authors: Hu, Weiqi, Zhou, Huicheng, Yang, Jianzhong, Hui, Enming, Dai, Chaoren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3
container_end_page
container_issue 16
container_start_page 3387
container_title Electronics (Basel)
container_volume 12
creator Hu, Weiqi
Zhou, Huicheng
Yang, Jianzhong
Hui, Enming
Dai, Chaoren
description With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.
doi_str_mv 10.3390/electronics12163387
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857006547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762474302</galeid><sourcerecordid>A762474302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</originalsourceid><addsrcrecordid>eNptUUtLAzEQXkTBUvsLvAQ8b81js0mOZVsfUBWlnpc0m21Tt8mapAX99aZWxIPzHeabYb55MFl2ieCYEAGvdadV9M4aFRBGJSGcnWQDDJnIBRb49A8_z0YhbGAygQgncJC9TRrZR7PX4HknbTSfMhpnwYu0Kw2mZm_CIVxotbbmfadB6zyY_Q4ElbOJdWAqo0zBtvc6fCuMBdVjBR6kWhurwcK5LlxkZ63sgh79-GH2ejNbVHf5_On2vprMc0UQijmnVBS8ULxN0LQRlC95s1wWlBJSYgYhpawlKN2OqKKSIyKFKLlgGHJOGzLMro59e-_SziHWG7fzNo2sMadJX9KCparxsWolO10b27ropUpo9NYoZ3VrUn7CSlywgkCcBOQoUN6F4HVb995spf-oEawPn6j_-QT5As2jfaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857006547</pqid></control><display><type>article</type><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><source>Publicly Available Content Database</source><creator>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</creator><creatorcontrib>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</creatorcontrib><description>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12163387</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive control ; Algorithms ; Artificial intelligence ; Big Data ; Control data (computers) ; Data acquisition ; Data collection ; Data compression ; Data points ; Data transmission ; Digital twins ; Efficiency ; Electronic control ; Fourier transforms ; Heat of transformation ; Industry 4.0 ; Internet of Things ; Machine tools ; Manufacturing ; Massive data points ; Methods ; New technology ; Numerical control ; Numerical controls ; Signal processing ; Technical services ; Wavelet transforms ; Working conditions</subject><ispartof>Electronics (Basel), 2023-08, Vol.12 (16), p.3387</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</cites><orcidid>0009-0004-4777-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857006547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857006547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Hu, Weiqi</creatorcontrib><creatorcontrib>Zhou, Huicheng</creatorcontrib><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Hui, Enming</creatorcontrib><creatorcontrib>Dai, Chaoren</creatorcontrib><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><title>Electronics (Basel)</title><description>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</description><subject>Accuracy</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Control data (computers)</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data compression</subject><subject>Data points</subject><subject>Data transmission</subject><subject>Digital twins</subject><subject>Efficiency</subject><subject>Electronic control</subject><subject>Fourier transforms</subject><subject>Heat of transformation</subject><subject>Industry 4.0</subject><subject>Internet of Things</subject><subject>Machine tools</subject><subject>Manufacturing</subject><subject>Massive data points</subject><subject>Methods</subject><subject>New technology</subject><subject>Numerical control</subject><subject>Numerical controls</subject><subject>Signal processing</subject><subject>Technical services</subject><subject>Wavelet transforms</subject><subject>Working conditions</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUUtLAzEQXkTBUvsLvAQ8b81js0mOZVsfUBWlnpc0m21Tt8mapAX99aZWxIPzHeabYb55MFl2ieCYEAGvdadV9M4aFRBGJSGcnWQDDJnIBRb49A8_z0YhbGAygQgncJC9TRrZR7PX4HknbTSfMhpnwYu0Kw2mZm_CIVxotbbmfadB6zyY_Q4ElbOJdWAqo0zBtvc6fCuMBdVjBR6kWhurwcK5LlxkZ63sgh79-GH2ejNbVHf5_On2vprMc0UQijmnVBS8ULxN0LQRlC95s1wWlBJSYgYhpawlKN2OqKKSIyKFKLlgGHJOGzLMro59e-_SziHWG7fzNo2sMadJX9KCparxsWolO10b27ropUpo9NYoZ3VrUn7CSlywgkCcBOQoUN6F4HVb995spf-oEawPn6j_-QT5As2jfaY</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hu, Weiqi</creator><creator>Zhou, Huicheng</creator><creator>Yang, Jianzhong</creator><creator>Hui, Enming</creator><creator>Dai, Chaoren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0004-4777-3278</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</title><author>Hu, Weiqi ; Zhou, Huicheng ; Yang, Jianzhong ; Hui, Enming ; Dai, Chaoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Control data (computers)</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data compression</topic><topic>Data points</topic><topic>Data transmission</topic><topic>Digital twins</topic><topic>Efficiency</topic><topic>Electronic control</topic><topic>Fourier transforms</topic><topic>Heat of transformation</topic><topic>Industry 4.0</topic><topic>Internet of Things</topic><topic>Machine tools</topic><topic>Manufacturing</topic><topic>Massive data points</topic><topic>Methods</topic><topic>New technology</topic><topic>Numerical control</topic><topic>Numerical controls</topic><topic>Signal processing</topic><topic>Technical services</topic><topic>Wavelet transforms</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Weiqi</creatorcontrib><creatorcontrib>Zhou, Huicheng</creatorcontrib><creatorcontrib>Yang, Jianzhong</creatorcontrib><creatorcontrib>Hui, Enming</creatorcontrib><creatorcontrib>Dai, Chaoren</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Weiqi</au><au>Zhou, Huicheng</au><au>Yang, Jianzhong</au><au>Hui, Enming</au><au>Dai, Chaoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>16</issue><spage>3387</spage><pages>3387-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the development of new technologies such as artificial intelligence and big data, Industry 4.0 in manufacturing has been launched. As the core pillar of industrial manufacturing, computer numerical control (CNC) machine tools face significant challenges in data acquisition transmission and storage due to their complex structure, high volume of data points, strong time-series characteristics, and large amounts of data. To address the shortcomings of existing compression algorithms in quantization methods for large amounts of data in the instruction-domain, this paper proposes a quantization method based on distortion rate evaluation and linear fitting entropy reduction transformation, which aims to compress state signals such as the load power and load current while ensuring the availability of the data. This approach provides technical support for the transmission of high-frequency big data and meets the lightweight data acquisition requirements of digital twins for CNC machine tools. Compared to the empirical approach, this approach was more accurate and more computationally efficient.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12163387</doi><orcidid>https://orcid.org/0009-0004-4777-3278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-08, Vol.12 (16), p.3387
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2857006547
source Publicly Available Content Database
subjects Accuracy
Adaptive control
Algorithms
Artificial intelligence
Big Data
Control data (computers)
Data acquisition
Data collection
Data compression
Data points
Data transmission
Digital twins
Efficiency
Electronic control
Fourier transforms
Heat of transformation
Industry 4.0
Internet of Things
Machine tools
Manufacturing
Massive data points
Methods
New technology
Numerical control
Numerical controls
Signal processing
Technical services
Wavelet transforms
Working conditions
title Adaptive Quantization Range Division Technique for Electronic Control Data Compression in CNC Machine Tools
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Quantization%20Range%20Division%20Technique%20for%20Electronic%20Control%20Data%20Compression%20in%20CNC%20Machine%20Tools&rft.jtitle=Electronics%20(Basel)&rft.au=Hu,%20Weiqi&rft.date=2023-08-01&rft.volume=12&rft.issue=16&rft.spage=3387&rft.pages=3387-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12163387&rft_dat=%3Cgale_proqu%3EA762474302%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-8559484c8f8f8e5d958b8dbb4553362700557f3139015c5a813a99689720885d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857006547&rft_id=info:pmid/&rft_galeid=A762474302&rfr_iscdi=true