Loading…
Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction
This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vacc...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2023-08, Vol.45 (3), p.4639-4650 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3 |
container_end_page | 4650 |
container_issue | 3 |
container_start_page | 4639 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 45 |
creator | Hsu, Pi-Shan Huang, Chien-Chung Sung, Wei-Ying Tsai, Han-Ying Wu, Zih-Xin Lin, Ting-Yu Lin, Kuo-Ping Liu, Gia-Shie |
description | This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination. |
doi_str_mv | 10.3233/JIFS-231165 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857018468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857018468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EElCY-AOWGJHBj8RxRlQoFFXqwGONHOe6ddXGwU6K0o1_TqIy3TN8Okf3Q-iG0XvBhXh4m8_eCReMyfQEXTCVpUTlMjsdMpUJYTyR5-gyxg2lLEs5vUC_y6Z1O73FutJD2gOuoQue2O5w6LGrLQSoDeDYxxZ2-Me1a1w6vwK_CrpZ96TUESrsxxZ30K3zNbY-4LrblRAi9hZPl1_zJ8JyvNfGuPrINAEqZ8Z4hc6s3ka4_r8T9Dl7_pi-ksXyZT59XBDDWd4SSC2TnGdJLiojJVAheJlUaZZnqUhUKaqKMSNzyUXJrGC5UcOTihrDFVelFhN0e-xtgv_uILbFxnehHiYLrtJsYBOpBuruSJngYwxgiyYMfkJfMFqMjovRcXF0LP4A3xxv6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857018468</pqid></control><display><type>article</type><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</creator><creatorcontrib>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</creatorcontrib><description>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-231165</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Artificial neural networks ; Biogeography ; COVID-19 vaccines ; Forecasting ; Fuzzy logic ; General regression neural networks ; Health care facilities ; Immunization ; Inference ; Mathematical models ; Optimization ; Prediction models ; Support vector machines</subject><ispartof>Journal of intelligent & fuzzy systems, 2023-08, Vol.45 (3), p.4639-4650</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hsu, Pi-Shan</creatorcontrib><creatorcontrib>Huang, Chien-Chung</creatorcontrib><creatorcontrib>Sung, Wei-Ying</creatorcontrib><creatorcontrib>Tsai, Han-Ying</creatorcontrib><creatorcontrib>Wu, Zih-Xin</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Kuo-Ping</creatorcontrib><creatorcontrib>Liu, Gia-Shie</creatorcontrib><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><title>Journal of intelligent & fuzzy systems</title><description>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Biogeography</subject><subject>COVID-19 vaccines</subject><subject>Forecasting</subject><subject>Fuzzy logic</subject><subject>General regression neural networks</subject><subject>Health care facilities</subject><subject>Immunization</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Support vector machines</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EElCY-AOWGJHBj8RxRlQoFFXqwGONHOe6ddXGwU6K0o1_TqIy3TN8Okf3Q-iG0XvBhXh4m8_eCReMyfQEXTCVpUTlMjsdMpUJYTyR5-gyxg2lLEs5vUC_y6Z1O73FutJD2gOuoQue2O5w6LGrLQSoDeDYxxZ2-Me1a1w6vwK_CrpZ96TUESrsxxZ30K3zNbY-4LrblRAi9hZPl1_zJ8JyvNfGuPrINAEqZ8Z4hc6s3ka4_r8T9Dl7_pi-ksXyZT59XBDDWd4SSC2TnGdJLiojJVAheJlUaZZnqUhUKaqKMSNzyUXJrGC5UcOTihrDFVelFhN0e-xtgv_uILbFxnehHiYLrtJsYBOpBuruSJngYwxgiyYMfkJfMFqMjovRcXF0LP4A3xxv6w</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Hsu, Pi-Shan</creator><creator>Huang, Chien-Chung</creator><creator>Sung, Wei-Ying</creator><creator>Tsai, Han-Ying</creator><creator>Wu, Zih-Xin</creator><creator>Lin, Ting-Yu</creator><creator>Lin, Kuo-Ping</creator><creator>Liu, Gia-Shie</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230824</creationdate><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><author>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Biogeography</topic><topic>COVID-19 vaccines</topic><topic>Forecasting</topic><topic>Fuzzy logic</topic><topic>General regression neural networks</topic><topic>Health care facilities</topic><topic>Immunization</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Pi-Shan</creatorcontrib><creatorcontrib>Huang, Chien-Chung</creatorcontrib><creatorcontrib>Sung, Wei-Ying</creatorcontrib><creatorcontrib>Tsai, Han-Ying</creatorcontrib><creatorcontrib>Wu, Zih-Xin</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Kuo-Ping</creatorcontrib><creatorcontrib>Liu, Gia-Shie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Pi-Shan</au><au>Huang, Chien-Chung</au><au>Sung, Wei-Ying</au><au>Tsai, Han-Ying</au><au>Wu, Zih-Xin</au><au>Lin, Ting-Yu</au><au>Lin, Kuo-Ping</au><au>Liu, Gia-Shie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>4639</spage><epage>4650</epage><pages>4639-4650</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-231165</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2023-08, Vol.45 (3), p.4639-4650 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2857018468 |
source | BSC - Ebsco (Business Source Ultimate) |
subjects | Adaptive systems Artificial neural networks Biogeography COVID-19 vaccines Forecasting Fuzzy logic General regression neural networks Health care facilities Immunization Inference Mathematical models Optimization Prediction models Support vector machines |
title | Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20adaptive%20neuro-fuzzy%20inference%20system%20with%20biogeography-based%20optimization%20for%20numbers%20of%20COVID-19%20vaccination%20prediction&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Hsu,%20Pi-Shan&rft.date=2023-08-24&rft.volume=45&rft.issue=3&rft.spage=4639&rft.epage=4650&rft.pages=4639-4650&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-231165&rft_dat=%3Cproquest_cross%3E2857018468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857018468&rft_id=info:pmid/&rfr_iscdi=true |