Loading…

Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction

This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vacc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2023-08, Vol.45 (3), p.4639-4650
Main Authors: Hsu, Pi-Shan, Huang, Chien-Chung, Sung, Wei-Ying, Tsai, Han-Ying, Wu, Zih-Xin, Lin, Ting-Yu, Lin, Kuo-Ping, Liu, Gia-Shie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3
container_end_page 4650
container_issue 3
container_start_page 4639
container_title Journal of intelligent & fuzzy systems
container_volume 45
creator Hsu, Pi-Shan
Huang, Chien-Chung
Sung, Wei-Ying
Tsai, Han-Ying
Wu, Zih-Xin
Lin, Ting-Yu
Lin, Kuo-Ping
Liu, Gia-Shie
description This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.
doi_str_mv 10.3233/JIFS-231165
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2857018468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857018468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EElCY-AOWGJHBj8RxRlQoFFXqwGONHOe6ddXGwU6K0o1_TqIy3TN8Okf3Q-iG0XvBhXh4m8_eCReMyfQEXTCVpUTlMjsdMpUJYTyR5-gyxg2lLEs5vUC_y6Z1O73FutJD2gOuoQue2O5w6LGrLQSoDeDYxxZ2-Me1a1w6vwK_CrpZ96TUESrsxxZ30K3zNbY-4LrblRAi9hZPl1_zJ8JyvNfGuPrINAEqZ8Z4hc6s3ka4_r8T9Dl7_pi-ksXyZT59XBDDWd4SSC2TnGdJLiojJVAheJlUaZZnqUhUKaqKMSNzyUXJrGC5UcOTihrDFVelFhN0e-xtgv_uILbFxnehHiYLrtJsYBOpBuruSJngYwxgiyYMfkJfMFqMjovRcXF0LP4A3xxv6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857018468</pqid></control><display><type>article</type><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</creator><creatorcontrib>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</creatorcontrib><description>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-231165</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Artificial neural networks ; Biogeography ; COVID-19 vaccines ; Forecasting ; Fuzzy logic ; General regression neural networks ; Health care facilities ; Immunization ; Inference ; Mathematical models ; Optimization ; Prediction models ; Support vector machines</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2023-08, Vol.45 (3), p.4639-4650</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hsu, Pi-Shan</creatorcontrib><creatorcontrib>Huang, Chien-Chung</creatorcontrib><creatorcontrib>Sung, Wei-Ying</creatorcontrib><creatorcontrib>Tsai, Han-Ying</creatorcontrib><creatorcontrib>Wu, Zih-Xin</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Kuo-Ping</creatorcontrib><creatorcontrib>Liu, Gia-Shie</creatorcontrib><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><title>Journal of intelligent &amp; fuzzy systems</title><description>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Biogeography</subject><subject>COVID-19 vaccines</subject><subject>Forecasting</subject><subject>Fuzzy logic</subject><subject>General regression neural networks</subject><subject>Health care facilities</subject><subject>Immunization</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Support vector machines</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAUhS0EElCY-AOWGJHBj8RxRlQoFFXqwGONHOe6ddXGwU6K0o1_TqIy3TN8Okf3Q-iG0XvBhXh4m8_eCReMyfQEXTCVpUTlMjsdMpUJYTyR5-gyxg2lLEs5vUC_y6Z1O73FutJD2gOuoQue2O5w6LGrLQSoDeDYxxZ2-Me1a1w6vwK_CrpZ96TUESrsxxZ30K3zNbY-4LrblRAi9hZPl1_zJ8JyvNfGuPrINAEqZ8Z4hc6s3ka4_r8T9Dl7_pi-ksXyZT59XBDDWd4SSC2TnGdJLiojJVAheJlUaZZnqUhUKaqKMSNzyUXJrGC5UcOTihrDFVelFhN0e-xtgv_uILbFxnehHiYLrtJsYBOpBuruSJngYwxgiyYMfkJfMFqMjovRcXF0LP4A3xxv6w</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Hsu, Pi-Shan</creator><creator>Huang, Chien-Chung</creator><creator>Sung, Wei-Ying</creator><creator>Tsai, Han-Ying</creator><creator>Wu, Zih-Xin</creator><creator>Lin, Ting-Yu</creator><creator>Lin, Kuo-Ping</creator><creator>Liu, Gia-Shie</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230824</creationdate><title>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</title><author>Hsu, Pi-Shan ; Huang, Chien-Chung ; Sung, Wei-Ying ; Tsai, Han-Ying ; Wu, Zih-Xin ; Lin, Ting-Yu ; Lin, Kuo-Ping ; Liu, Gia-Shie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Biogeography</topic><topic>COVID-19 vaccines</topic><topic>Forecasting</topic><topic>Fuzzy logic</topic><topic>General regression neural networks</topic><topic>Health care facilities</topic><topic>Immunization</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Pi-Shan</creatorcontrib><creatorcontrib>Huang, Chien-Chung</creatorcontrib><creatorcontrib>Sung, Wei-Ying</creatorcontrib><creatorcontrib>Tsai, Han-Ying</creatorcontrib><creatorcontrib>Wu, Zih-Xin</creatorcontrib><creatorcontrib>Lin, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Kuo-Ping</creatorcontrib><creatorcontrib>Liu, Gia-Shie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Pi-Shan</au><au>Huang, Chien-Chung</au><au>Sung, Wei-Ying</au><au>Tsai, Han-Ying</au><au>Wu, Zih-Xin</au><au>Lin, Ting-Yu</au><au>Lin, Kuo-Ping</au><au>Liu, Gia-Shie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>45</volume><issue>3</issue><spage>4639</spage><epage>4650</epage><pages>4639-4650</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-231165</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2023-08, Vol.45 (3), p.4639-4650
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2857018468
source BSC - Ebsco (Business Source Ultimate)
subjects Adaptive systems
Artificial neural networks
Biogeography
COVID-19 vaccines
Forecasting
Fuzzy logic
General regression neural networks
Health care facilities
Immunization
Inference
Mathematical models
Optimization
Prediction models
Support vector machines
title Optimal adaptive neuro-fuzzy inference system with biogeography-based optimization for numbers of COVID-19 vaccination prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20adaptive%20neuro-fuzzy%20inference%20system%20with%20biogeography-based%20optimization%20for%20numbers%20of%20COVID-19%20vaccination%20prediction&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Hsu,%20Pi-Shan&rft.date=2023-08-24&rft.volume=45&rft.issue=3&rft.spage=4639&rft.epage=4650&rft.pages=4639-4650&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-231165&rft_dat=%3Cproquest_cross%3E2857018468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-e5f16227493dc66e0332b4d57975348b3dd11c69623b1f319c800180cc2828ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857018468&rft_id=info:pmid/&rfr_iscdi=true