Loading…
Improvement of biocorrosion resistance on steel using full annealing heat treatment
The performance of a material structure can be affected due to corrosion damage. Corrosion is a decrease in metal quality caused by electrochemical reactions between metals and their surrounding environment. One of the causes of corrosion is microalgae or called biocorrosion. Corrosion can cause fai...
Saved in:
Published in: | Journal of physics. Conference series 2023-08, Vol.2556 (1), p.12017 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of a material structure can be affected due to corrosion damage. Corrosion is a decrease in metal quality caused by electrochemical reactions between metals and their surrounding environment. One of the causes of corrosion is microalgae or called biocorrosion. Corrosion can cause failure of the pipe structure which causes the pipe to not operate properly. The purpose of the research was to determine the corrosion rate of ASTM A53 steel material with full annealing heat treatment and without heat treatment. Second research aim was to determine the biocorrosion with added of microalgae and without the addition of microalgae. Heat treatment and non-heat treatment materials were testing using the immersion corrosion test method, which was soaked in artificial seawater with a salinity of 35‰. Based on the results, the highest biocorrosion rate on non-heat treated materials with the addition of
Chrorella vulgaris
reached 0.2780 mpy. While the biocorrosion rate after full annealing treatment was 0.1434 mpy and the size of uniform corrosion and pitting decreased. The percentages reduction of biocorrosion rete was 46.58%. This indicates that the addition of
Chlorella vulgaris
can accelerate the corrosion rate and full annealing can inhibit the biocorrosion rate. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2556/1/012017 |