Loading…

Integrating Life Cycle Assessment and Machine Learning to Enhance Black Soldier Fly Larvae-Based Composting of Kitchen Waste

Around 40% to 60% of municipal solid waste originates from kitchens, offering a valuable resource for compost production. Traditional composting methods such as windrow, vermi-, and bin composting are space-intensive and time-consuming. Black soldier fly larvae (BSFL) present a promising alternative...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2023-08, Vol.15 (16), p.12475
Main Authors: Arshad, Muhammad Yousaf, Saeed, Salaha, Raza, Ahsan, Ahmad, Anum Suhail, Urbanowska, Agnieszka, Jackowski, Mateusz, Niedzwiecki, Lukasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Around 40% to 60% of municipal solid waste originates from kitchens, offering a valuable resource for compost production. Traditional composting methods such as windrow, vermi-, and bin composting are space-intensive and time-consuming. Black soldier fly larvae (BSFL) present a promising alternative, requiring less space and offering ease of handling. This research encompasses experimental data collection, life cycle assessment, and machine learning, and employs the Levenberg–Marquardt algorithm in an Artificial Neural Network, to optimize kitchen waste treatment using BSFL. Factors such as time, larval population, aeration frequency, waste composition, and container surface area were considered. Results showed that BSFL achieved significant waste reduction, ranging from 70% to 93% by weight and 65% to 85% by volume under optimal conditions. Key findings included a 15-day treatment duration, four times per day aeration frequency, 600 larvae per kilogram of waste, layering during feeding, and kitchen waste as the preferred feed. The larvae exhibited a weight gain of 2.2% to 6.5% during composting. Comparing the quality of BSFL compost to that obtained with conventional methods revealed its superiority in terms of waste reduction (50% to 73% more) and compost quality. Life cycle assessment confirmed the sustainability advantages of BSFL. Machine learning achieved high accuracy of prediction reaching 99.5%.
ISSN:2071-1050
2071-1050
DOI:10.3390/su151612475