Loading…

Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model

Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2023-08, Vol.11 (8), p.2355
Main Authors: Hubach, Tobias, Schlüter, Stefan, Held, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c293t-b86deb407534ff95533582236047cd2bc234b4909321d76a3b217eef8e2706063
container_end_page
container_issue 8
container_start_page 2355
container_title Processes
container_volume 11
creator Hubach, Tobias
Schlüter, Stefan
Held, Christoph
description Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage membrane plant that differentiates between different ions and that is based on a validated transport model. This study presents a method for modeling predefined membrane interconnections using discretization along the membrane length and across the membrane thickness. The solution-diffusion–electromigration model was used as the transport model in a fundamental membrane flowsheet, and the model was employed to optimize a given flowsheet with a flexible objective function. The methodology was evaluated for three distinct separation tasks, and optimized operating points were found. These show that permeances and feed concentrations might cause negative rejections and positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby allowing for a favorable separation between the ions of different valence at optimized conditions. In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to 2.8 in three membrane stages.
doi_str_mv 10.3390/pr11082355
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2857449010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547322</galeid><sourcerecordid>A762547322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b86deb407534ff95533582236047cd2bc234b4909321d76a3b217eef8e2706063</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVKUXviASN6QUP-I4OZZSHlJLD6Vny0ns4CqJi-0c4MQ_8Id8CS6pBLuHXe3O7mg0AFwiOCUkhzd7ixDMMKH0BIwwxizOGWKn__pzMHFuB0PkiGQ0HYFmZSrZxLfCySpa771u9Yfw2nSRUdGqb7yON17UMnoWnVG68XbYbp3u6si_ymhjmv4wiu-0Ur0L3ffn16KRpbem1fUR_0tzAc6UaJycHOsYbO8XL_PHeLl-eJrPlnGJc-LjIksrWSSQUZIolVNKCM0wJilMWFnhosQkKZIc5gSjiqWCFBgxKVUmMYMpTMkYXA1_99a89dJ5vjO97QIlxxllSbhFMKCmA6oWjeS6UyaIK0NWstWl6WSQK_mMpZgmjAT-MbgeDkprnLNS8b3VrbDvHEF-cID_OUB-AD43eRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857449010</pqid></control><display><type>article</type><title>Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hubach, Tobias ; Schlüter, Stefan ; Held, Christoph</creator><creatorcontrib>Hubach, Tobias ; Schlüter, Stefan ; Held, Christoph</creatorcontrib><description>Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage membrane plant that differentiates between different ions and that is based on a validated transport model. This study presents a method for modeling predefined membrane interconnections using discretization along the membrane length and across the membrane thickness. The solution-diffusion–electromigration model was used as the transport model in a fundamental membrane flowsheet, and the model was employed to optimize a given flowsheet with a flexible objective function. The methodology was evaluated for three distinct separation tasks, and optimized operating points were found. These show that permeances and feed concentrations might cause negative rejections and positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby allowing for a favorable separation between the ions of different valence at optimized conditions. In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to 2.8 in three membrane stages.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11082355</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Case studies ; Electric fields ; Electrolytes ; Electromigration ; Energy consumption ; Ions ; Lithium ; Lithium-ion batteries ; Magnesium ; Membrane separation ; Membranes ; Nanofiltration ; Optimization ; Osmosis ; Rechargeable batteries ; Seawater ; Separation</subject><ispartof>Processes, 2023-08, Vol.11 (8), p.2355</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-b86deb407534ff95533582236047cd2bc234b4909321d76a3b217eef8e2706063</cites><orcidid>0000-0003-4682-5094 ; 0000-0001-8975-3313 ; 0000-0003-1074-177X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857449010/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857449010?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hubach, Tobias</creatorcontrib><creatorcontrib>Schlüter, Stefan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><title>Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model</title><title>Processes</title><description>Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage membrane plant that differentiates between different ions and that is based on a validated transport model. This study presents a method for modeling predefined membrane interconnections using discretization along the membrane length and across the membrane thickness. The solution-diffusion–electromigration model was used as the transport model in a fundamental membrane flowsheet, and the model was employed to optimize a given flowsheet with a flexible objective function. The methodology was evaluated for three distinct separation tasks, and optimized operating points were found. These show that permeances and feed concentrations might cause negative rejections and positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby allowing for a favorable separation between the ions of different valence at optimized conditions. In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to 2.8 in three membrane stages.</description><subject>Case studies</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Electromigration</subject><subject>Energy consumption</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Optimization</subject><subject>Osmosis</subject><subject>Rechargeable batteries</subject><subject>Seawater</subject><subject>Separation</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUctOwzAQtBBIVKUXviASN6QUP-I4OZZSHlJLD6Vny0ns4CqJi-0c4MQ_8Id8CS6pBLuHXe3O7mg0AFwiOCUkhzd7ixDMMKH0BIwwxizOGWKn__pzMHFuB0PkiGQ0HYFmZSrZxLfCySpa771u9Yfw2nSRUdGqb7yON17UMnoWnVG68XbYbp3u6si_ymhjmv4wiu-0Ur0L3ffn16KRpbem1fUR_0tzAc6UaJycHOsYbO8XL_PHeLl-eJrPlnGJc-LjIksrWSSQUZIolVNKCM0wJilMWFnhosQkKZIc5gSjiqWCFBgxKVUmMYMpTMkYXA1_99a89dJ5vjO97QIlxxllSbhFMKCmA6oWjeS6UyaIK0NWstWl6WSQK_mMpZgmjAT-MbgeDkprnLNS8b3VrbDvHEF-cID_OUB-AD43eRU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hubach, Tobias</creator><creator>Schlüter, Stefan</creator><creator>Held, Christoph</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4682-5094</orcidid><orcidid>https://orcid.org/0000-0001-8975-3313</orcidid><orcidid>https://orcid.org/0000-0003-1074-177X</orcidid></search><sort><creationdate>20230801</creationdate><title>Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model</title><author>Hubach, Tobias ; Schlüter, Stefan ; Held, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b86deb407534ff95533582236047cd2bc234b4909321d76a3b217eef8e2706063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Electromigration</topic><topic>Energy consumption</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Optimization</topic><topic>Osmosis</topic><topic>Rechargeable batteries</topic><topic>Seawater</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubach, Tobias</creatorcontrib><creatorcontrib>Schlüter, Stefan</creatorcontrib><creatorcontrib>Held, Christoph</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubach, Tobias</au><au>Schlüter, Stefan</au><au>Held, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model</atitle><jtitle>Processes</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>2355</spage><pages>2355-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage membrane plant that differentiates between different ions and that is based on a validated transport model. This study presents a method for modeling predefined membrane interconnections using discretization along the membrane length and across the membrane thickness. The solution-diffusion–electromigration model was used as the transport model in a fundamental membrane flowsheet, and the model was employed to optimize a given flowsheet with a flexible objective function. The methodology was evaluated for three distinct separation tasks, and optimized operating points were found. These show that permeances and feed concentrations might cause negative rejections and positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby allowing for a favorable separation between the ions of different valence at optimized conditions. In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to 2.8 in three membrane stages.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11082355</doi><orcidid>https://orcid.org/0000-0003-4682-5094</orcidid><orcidid>https://orcid.org/0000-0001-8975-3313</orcidid><orcidid>https://orcid.org/0000-0003-1074-177X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-08, Vol.11 (8), p.2355
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2857449010
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Case studies
Electric fields
Electrolytes
Electromigration
Energy consumption
Ions
Lithium
Lithium-ion batteries
Magnesium
Membrane separation
Membranes
Nanofiltration
Optimization
Osmosis
Rechargeable batteries
Seawater
Separation
title Model-Based Optimization of Multi-Stage Nanofiltration Using the Solution-Diffusion–Electromigration Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Based%20Optimization%20of%20Multi-Stage%20Nanofiltration%20Using%20the%20Solution-Diffusion%E2%80%93Electromigration%20Model&rft.jtitle=Processes&rft.au=Hubach,%20Tobias&rft.date=2023-08-01&rft.volume=11&rft.issue=8&rft.spage=2355&rft.pages=2355-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11082355&rft_dat=%3Cgale_proqu%3EA762547322%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b86deb407534ff95533582236047cd2bc234b4909321d76a3b217eef8e2706063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857449010&rft_id=info:pmid/&rft_galeid=A762547322&rfr_iscdi=true