Loading…

The evolution of surface quasi-geostrophic modons on sloping topography

This work discusses modons, or dipolar vortices, propagating along sloping topography. Two different regimes exist, which are studied separately using the surface quasi-geostrophic equations. First, when the modon propagates in the direction opposite to topographic Rossby waves, steady solutions exi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2023-08, Vol.970, Article A10
Main Authors: Crowe, Matthew N., Johnson, Edward R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73
cites cdi_FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 970
creator Crowe, Matthew N.
Johnson, Edward R.
description This work discusses modons, or dipolar vortices, propagating along sloping topography. Two different regimes exist, which are studied separately using the surface quasi-geostrophic equations. First, when the modon propagates in the direction opposite to topographic Rossby waves, steady solutions exist and a semi-analytical method is presented for calculating these solutions. Second, when the modon propagates in the same direction as the Rossby waves, a wave wake is generated. This wake removes energy from the modon, causing it to decay slowly. Asymptotic predictions are presented for this decay and found to agree closely with numerical simulations. Over long times, decaying vortices are found to break down due to an asymmetry resulting from the generation of waves inside the vortex. A monopolar vortex moving along a wall is shown to behave in a similar way to a dipole, though the presence of the wall is found to stabilise the vortex and prevent the long-time breakdown. The problem is equivalent mathematically to a dipolar vortex moving along a density front, hence our results apply directly to this case.
doi_str_mv 10.1017/jfm.2023.607
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858090575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_607</cupid><sourcerecordid>2858090575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKd3_oCAt7aeJG3TXsrQKQy8mdchzUfbsTZd0gr792Zs4I1XBw7P-57Dg9AjgZQA4S8726cUKEsL4FdoQbKiSniR5ddoAUBpQgiFW3QXwg6AMKj4Aq23rcHmx-3nqXMDdhaH2VupDD7MMnRJY1yYvBvbTuHeaTcEHLGwd2M3NHhyo2u8HNvjPbqxch_Mw2Uu0ff723b1kWy-1p-r102iWAZTYlUF2jAutWV1XpPSqKySpM5B8_iiVbrgNi6YUbmhNCsLKLWtmC6tVVRztkRP597Ru8NswiR2bvZDPClomZdQQc7zSD2fKeVdCN5YMfqul_4oCIiTKhFViZMqEVVFPL3gsq99pxvz1_pv4BcMXGyj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858090575</pqid></control><display><type>article</type><title>The evolution of surface quasi-geostrophic modons on sloping topography</title><source>Cambridge University Press</source><creator>Crowe, Matthew N. ; Johnson, Edward R.</creator><creatorcontrib>Crowe, Matthew N. ; Johnson, Edward R.</creatorcontrib><description>This work discusses modons, or dipolar vortices, propagating along sloping topography. Two different regimes exist, which are studied separately using the surface quasi-geostrophic equations. First, when the modon propagates in the direction opposite to topographic Rossby waves, steady solutions exist and a semi-analytical method is presented for calculating these solutions. Second, when the modon propagates in the same direction as the Rossby waves, a wave wake is generated. This wake removes energy from the modon, causing it to decay slowly. Asymptotic predictions are presented for this decay and found to agree closely with numerical simulations. Over long times, decaying vortices are found to break down due to an asymmetry resulting from the generation of waves inside the vortex. A monopolar vortex moving along a wall is shown to behave in a similar way to a dipole, though the presence of the wall is found to stabilise the vortex and prevent the long-time breakdown. The problem is equivalent mathematically to a dipolar vortex moving along a density front, hence our results apply directly to this case.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.607</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analytical methods ; Chlorophyll ; Decay ; Dipoles ; Direction ; JFM Papers ; Planetary waves ; Topography ; Vortices</subject><ispartof>Journal of fluid mechanics, 2023-08, Vol.970, Article A10</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73</citedby><cites>FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73</cites><orcidid>0000-0002-9916-2653 ; 0000-0001-7129-8471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023006079/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Crowe, Matthew N.</creatorcontrib><creatorcontrib>Johnson, Edward R.</creatorcontrib><title>The evolution of surface quasi-geostrophic modons on sloping topography</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This work discusses modons, or dipolar vortices, propagating along sloping topography. Two different regimes exist, which are studied separately using the surface quasi-geostrophic equations. First, when the modon propagates in the direction opposite to topographic Rossby waves, steady solutions exist and a semi-analytical method is presented for calculating these solutions. Second, when the modon propagates in the same direction as the Rossby waves, a wave wake is generated. This wake removes energy from the modon, causing it to decay slowly. Asymptotic predictions are presented for this decay and found to agree closely with numerical simulations. Over long times, decaying vortices are found to break down due to an asymmetry resulting from the generation of waves inside the vortex. A monopolar vortex moving along a wall is shown to behave in a similar way to a dipole, though the presence of the wall is found to stabilise the vortex and prevent the long-time breakdown. The problem is equivalent mathematically to a dipolar vortex moving along a density front, hence our results apply directly to this case.</description><subject>Analytical methods</subject><subject>Chlorophyll</subject><subject>Decay</subject><subject>Dipoles</subject><subject>Direction</subject><subject>JFM Papers</subject><subject>Planetary waves</subject><subject>Topography</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAUhoMoOKd3_oCAt7aeJG3TXsrQKQy8mdchzUfbsTZd0gr792Zs4I1XBw7P-57Dg9AjgZQA4S8726cUKEsL4FdoQbKiSniR5ddoAUBpQgiFW3QXwg6AMKj4Aq23rcHmx-3nqXMDdhaH2VupDD7MMnRJY1yYvBvbTuHeaTcEHLGwd2M3NHhyo2u8HNvjPbqxch_Mw2Uu0ff723b1kWy-1p-r102iWAZTYlUF2jAutWV1XpPSqKySpM5B8_iiVbrgNi6YUbmhNCsLKLWtmC6tVVRztkRP597Ru8NswiR2bvZDPClomZdQQc7zSD2fKeVdCN5YMfqul_4oCIiTKhFViZMqEVVFPL3gsq99pxvz1_pv4BcMXGyj</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Crowe, Matthew N.</creator><creator>Johnson, Edward R.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9916-2653</orcidid><orcidid>https://orcid.org/0000-0001-7129-8471</orcidid></search><sort><creationdate>20230829</creationdate><title>The evolution of surface quasi-geostrophic modons on sloping topography</title><author>Crowe, Matthew N. ; Johnson, Edward R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical methods</topic><topic>Chlorophyll</topic><topic>Decay</topic><topic>Dipoles</topic><topic>Direction</topic><topic>JFM Papers</topic><topic>Planetary waves</topic><topic>Topography</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowe, Matthew N.</creatorcontrib><creatorcontrib>Johnson, Edward R.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowe, Matthew N.</au><au>Johnson, Edward R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of surface quasi-geostrophic modons on sloping topography</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-08-29</date><risdate>2023</risdate><volume>970</volume><artnum>A10</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This work discusses modons, or dipolar vortices, propagating along sloping topography. Two different regimes exist, which are studied separately using the surface quasi-geostrophic equations. First, when the modon propagates in the direction opposite to topographic Rossby waves, steady solutions exist and a semi-analytical method is presented for calculating these solutions. Second, when the modon propagates in the same direction as the Rossby waves, a wave wake is generated. This wake removes energy from the modon, causing it to decay slowly. Asymptotic predictions are presented for this decay and found to agree closely with numerical simulations. Over long times, decaying vortices are found to break down due to an asymmetry resulting from the generation of waves inside the vortex. A monopolar vortex moving along a wall is shown to behave in a similar way to a dipole, though the presence of the wall is found to stabilise the vortex and prevent the long-time breakdown. The problem is equivalent mathematically to a dipolar vortex moving along a density front, hence our results apply directly to this case.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.607</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9916-2653</orcidid><orcidid>https://orcid.org/0000-0001-7129-8471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-08, Vol.970, Article A10
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2858090575
source Cambridge University Press
subjects Analytical methods
Chlorophyll
Decay
Dipoles
Direction
JFM Papers
Planetary waves
Topography
Vortices
title The evolution of surface quasi-geostrophic modons on sloping topography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20surface%20quasi-geostrophic%20modons%20on%20sloping%20topography&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Crowe,%20Matthew%20N.&rft.date=2023-08-29&rft.volume=970&rft.artnum=A10&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.607&rft_dat=%3Cproquest_cross%3E2858090575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-fc90de37adf3b5b18ec49a1b50d7002fcd67f9a13ec5e2248608df93d8ffc2d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858090575&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_607&rfr_iscdi=true