Loading…
Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy
The weak disorder potential seen by the electrons of a two-dimensional electron gas in high-mobility semiconductor heterostructures leads to fluctuations in the physical properties and can be an issue for nanodevices. In this paper, we show that a scanning gate microscopy (SGM) image contains inform...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Percebois, Gaëtan J Lacerda-Santos, Antonio Brun, Boris Hackens, Benoit Waintal, Xavier Weinmann, Dietmar |
description | The weak disorder potential seen by the electrons of a two-dimensional electron gas in high-mobility semiconductor heterostructures leads to fluctuations in the physical properties and can be an issue for nanodevices. In this paper, we show that a scanning gate microscopy (SGM) image contains information about the disorder potential, and that a machine learning approach based on SGM data can be used to determine the disorder. We reconstruct the electric potential of a sample from its experimental SGM data and validate the result through an estimate of its accuracy. |
doi_str_mv | 10.48550/arxiv.2308.13372 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858093340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858093340</sourcerecordid><originalsourceid>FETCH-LOGICAL-a952-9a9a47acaccaada5236e4a3e70be8a7557afcd83e153a1d6feaff652a7e74f53</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMgWGp_gLuA66mZvMlkZinFLygI6r68Zl5mUtqkJhm1_96RurqLe-65jN2UYlk1Sok7jD_uaylBNMsSQMsLNpMAZdFUUl6xRUo7IYSstVQKZuz0Rib4lONosvM9zwPxY8jks8M9nyrr-jFidsFz5znywfVDcQhbt3f5xBMd3AR10zpEPlCmGM6yMRL_dnngyaD3f-oeM_EJnwgTjqdrdmlxn2jxn3P2_vjwsXou1q9PL6v7dYGtkkWLLVYaDRqD2KGSUFOFQFpsqUGtlEZrugaoVIBlV1tCa2slUZOurII5uz1bjzF8jpTyZhfG6KfDjWxUI1qASsAvSNZjWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858093340</pqid></control><display><type>article</type><title>Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy</title><source>ProQuest Publicly Available Content database</source><creator>Percebois, Gaëtan J ; Lacerda-Santos, Antonio ; Brun, Boris ; Hackens, Benoit ; Waintal, Xavier ; Weinmann, Dietmar</creator><creatorcontrib>Percebois, Gaëtan J ; Lacerda-Santos, Antonio ; Brun, Boris ; Hackens, Benoit ; Waintal, Xavier ; Weinmann, Dietmar</creatorcontrib><description>The weak disorder potential seen by the electrons of a two-dimensional electron gas in high-mobility semiconductor heterostructures leads to fluctuations in the physical properties and can be an issue for nanodevices. In this paper, we show that a scanning gate microscopy (SGM) image contains information about the disorder potential, and that a machine learning approach based on SGM data can be used to determine the disorder. We reconstruct the electric potential of a sample from its experimental SGM data and validate the result through an estimate of its accuracy.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2308.13372</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electron gas ; Electrons ; Heterostructures ; Machine learning ; Microscopy ; Nanotechnology devices ; Physical properties</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2858093340?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Percebois, Gaëtan J</creatorcontrib><creatorcontrib>Lacerda-Santos, Antonio</creatorcontrib><creatorcontrib>Brun, Boris</creatorcontrib><creatorcontrib>Hackens, Benoit</creatorcontrib><creatorcontrib>Waintal, Xavier</creatorcontrib><creatorcontrib>Weinmann, Dietmar</creatorcontrib><title>Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy</title><title>arXiv.org</title><description>The weak disorder potential seen by the electrons of a two-dimensional electron gas in high-mobility semiconductor heterostructures leads to fluctuations in the physical properties and can be an issue for nanodevices. In this paper, we show that a scanning gate microscopy (SGM) image contains information about the disorder potential, and that a machine learning approach based on SGM data can be used to determine the disorder. We reconstruct the electric potential of a sample from its experimental SGM data and validate the result through an estimate of its accuracy.</description><subject>Electron gas</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Machine learning</subject><subject>Microscopy</subject><subject>Nanotechnology devices</subject><subject>Physical properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEURYMgWGp_gLuA66mZvMlkZinFLygI6r68Zl5mUtqkJhm1_96RurqLe-65jN2UYlk1Sok7jD_uaylBNMsSQMsLNpMAZdFUUl6xRUo7IYSstVQKZuz0Rib4lONosvM9zwPxY8jks8M9nyrr-jFidsFz5znywfVDcQhbt3f5xBMd3AR10zpEPlCmGM6yMRL_dnngyaD3f-oeM_EJnwgTjqdrdmlxn2jxn3P2_vjwsXou1q9PL6v7dYGtkkWLLVYaDRqD2KGSUFOFQFpsqUGtlEZrugaoVIBlV1tCa2slUZOurII5uz1bjzF8jpTyZhfG6KfDjWxUI1qASsAvSNZjWg</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Percebois, Gaëtan J</creator><creator>Lacerda-Santos, Antonio</creator><creator>Brun, Boris</creator><creator>Hackens, Benoit</creator><creator>Waintal, Xavier</creator><creator>Weinmann, Dietmar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231109</creationdate><title>Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy</title><author>Percebois, Gaëtan J ; Lacerda-Santos, Antonio ; Brun, Boris ; Hackens, Benoit ; Waintal, Xavier ; Weinmann, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a952-9a9a47acaccaada5236e4a3e70be8a7557afcd83e153a1d6feaff652a7e74f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electron gas</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Machine learning</topic><topic>Microscopy</topic><topic>Nanotechnology devices</topic><topic>Physical properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Percebois, Gaëtan J</creatorcontrib><creatorcontrib>Lacerda-Santos, Antonio</creatorcontrib><creatorcontrib>Brun, Boris</creatorcontrib><creatorcontrib>Hackens, Benoit</creatorcontrib><creatorcontrib>Waintal, Xavier</creatorcontrib><creatorcontrib>Weinmann, Dietmar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Percebois, Gaëtan J</au><au>Lacerda-Santos, Antonio</au><au>Brun, Boris</au><au>Hackens, Benoit</au><au>Waintal, Xavier</au><au>Weinmann, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy</atitle><jtitle>arXiv.org</jtitle><date>2023-11-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The weak disorder potential seen by the electrons of a two-dimensional electron gas in high-mobility semiconductor heterostructures leads to fluctuations in the physical properties and can be an issue for nanodevices. In this paper, we show that a scanning gate microscopy (SGM) image contains information about the disorder potential, and that a machine learning approach based on SGM data can be used to determine the disorder. We reconstruct the electric potential of a sample from its experimental SGM data and validate the result through an estimate of its accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2308.13372</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2858093340 |
source | ProQuest Publicly Available Content database |
subjects | Electron gas Electrons Heterostructures Machine learning Microscopy Nanotechnology devices Physical properties |
title | Reconstructing the potential configuration in a high-mobility semiconductor heterostructure with scanning gate microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20the%20potential%20configuration%20in%20a%20high-mobility%20semiconductor%20heterostructure%20with%20scanning%20gate%20microscopy&rft.jtitle=arXiv.org&rft.au=Percebois,%20Ga%C3%ABtan%20J&rft.date=2023-11-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2308.13372&rft_dat=%3Cproquest%3E2858093340%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a952-9a9a47acaccaada5236e4a3e70be8a7557afcd83e153a1d6feaff652a7e74f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858093340&rft_id=info:pmid/&rfr_iscdi=true |