Loading…

Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization

Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206
Main Authors: Shin, Joonchul, Lee, Geonhee, Choi, Myungwoo, Jang, Huiwon, Lim, Yunsung, Gwang-Su, Kim, Sang-Hyeon Nam, Baek, Seung-Hyub, Song, Hyun-Cheol, Kim, Jihan, Chong-Yun, Kang, Jeong-O, Lee, Jeon, Seokwoo, Cho, Donghwi, Ji-Soo, Jang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18206
container_issue 34
container_start_page 18195
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Shin, Joonchul
Lee, Geonhee
Choi, Myungwoo
Jang, Huiwon
Lim, Yunsung
Gwang-Su, Kim
Sang-Hyeon Nam
Baek, Seung-Hyub
Song, Hyun-Cheol
Kim, Jihan
Chong-Yun, Kang
Jeong-O, Lee
Jeon, Seokwoo
Cho, Donghwi
Ji-Soo, Jang
description Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (
doi_str_mv 10.1039/d3ta02160b
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858293246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858293246</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3</originalsourceid><addsrcrecordid>eNo9jU1Lw0AYhBdRsNRe_AULnqP7kf06lvpRodBLPZe3u29Myiap2Q1Yf72tinOZYWCeIeSWs3vOpHsIMgMTXLPdBZkIplhhSqcv_7O112SW0p6dZBnTzk3I-zz3beMhxiNtm08M1EOGeEw50b6jQOUjzXXTFanGGOmmWQta9QMNI8Si7QNE6mv8IdCAGX1uzrMu0A7HPEBsvuBc3ZCrCmLC2Z9Pydvz02axLFbrl9fFfFUcuJW5UJUPXvtS6ZIZ5AqVl4DcAPfOKAOlkZWyascsypIpqbxS0nDhUTtuHcopufvlHob-Y8SUt_t-HLrT5VZYZYWTotTyG-_KWIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858293246</pqid></control><display><type>article</type><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</creator><creatorcontrib>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</creatorcontrib><description>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (&lt;5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02160b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical detection ; Chemical perception ; Chemoreception ; Environmental degradation ; Environmental impact ; Flash lamps ; Heterostructures ; Metal ions ; Metal oxides ; Nanoparticles ; Neutralization ; Pollutants ; Pollution detection ; Size distribution ; Thermal engineering ; Titanium dioxide ; Water pollution</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shin, Joonchul</creatorcontrib><creatorcontrib>Lee, Geonhee</creatorcontrib><creatorcontrib>Choi, Myungwoo</creatorcontrib><creatorcontrib>Jang, Huiwon</creatorcontrib><creatorcontrib>Lim, Yunsung</creatorcontrib><creatorcontrib>Gwang-Su, Kim</creatorcontrib><creatorcontrib>Sang-Hyeon Nam</creatorcontrib><creatorcontrib>Baek, Seung-Hyub</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Kim, Jihan</creatorcontrib><creatorcontrib>Chong-Yun, Kang</creatorcontrib><creatorcontrib>Jeong-O, Lee</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Cho, Donghwi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (&lt;5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</description><subject>Catalysts</subject><subject>Chemical detection</subject><subject>Chemical perception</subject><subject>Chemoreception</subject><subject>Environmental degradation</subject><subject>Environmental impact</subject><subject>Flash lamps</subject><subject>Heterostructures</subject><subject>Metal ions</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Neutralization</subject><subject>Pollutants</subject><subject>Pollution detection</subject><subject>Size distribution</subject><subject>Thermal engineering</subject><subject>Titanium dioxide</subject><subject>Water pollution</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jU1Lw0AYhBdRsNRe_AULnqP7kf06lvpRodBLPZe3u29Myiap2Q1Yf72tinOZYWCeIeSWs3vOpHsIMgMTXLPdBZkIplhhSqcv_7O112SW0p6dZBnTzk3I-zz3beMhxiNtm08M1EOGeEw50b6jQOUjzXXTFanGGOmmWQta9QMNI8Si7QNE6mv8IdCAGX1uzrMu0A7HPEBsvuBc3ZCrCmLC2Z9Pydvz02axLFbrl9fFfFUcuJW5UJUPXvtS6ZIZ5AqVl4DcAPfOKAOlkZWyascsypIpqbxS0nDhUTtuHcopufvlHob-Y8SUt_t-HLrT5VZYZYWTotTyG-_KWIQ</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Shin, Joonchul</creator><creator>Lee, Geonhee</creator><creator>Choi, Myungwoo</creator><creator>Jang, Huiwon</creator><creator>Lim, Yunsung</creator><creator>Gwang-Su, Kim</creator><creator>Sang-Hyeon Nam</creator><creator>Baek, Seung-Hyub</creator><creator>Song, Hyun-Cheol</creator><creator>Kim, Jihan</creator><creator>Chong-Yun, Kang</creator><creator>Jeong-O, Lee</creator><creator>Jeon, Seokwoo</creator><creator>Cho, Donghwi</creator><creator>Ji-Soo, Jang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230829</creationdate><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><author>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemical detection</topic><topic>Chemical perception</topic><topic>Chemoreception</topic><topic>Environmental degradation</topic><topic>Environmental impact</topic><topic>Flash lamps</topic><topic>Heterostructures</topic><topic>Metal ions</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Neutralization</topic><topic>Pollutants</topic><topic>Pollution detection</topic><topic>Size distribution</topic><topic>Thermal engineering</topic><topic>Titanium dioxide</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Joonchul</creatorcontrib><creatorcontrib>Lee, Geonhee</creatorcontrib><creatorcontrib>Choi, Myungwoo</creatorcontrib><creatorcontrib>Jang, Huiwon</creatorcontrib><creatorcontrib>Lim, Yunsung</creatorcontrib><creatorcontrib>Gwang-Su, Kim</creatorcontrib><creatorcontrib>Sang-Hyeon Nam</creatorcontrib><creatorcontrib>Baek, Seung-Hyub</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Kim, Jihan</creatorcontrib><creatorcontrib>Chong-Yun, Kang</creatorcontrib><creatorcontrib>Jeong-O, Lee</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Cho, Donghwi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Joonchul</au><au>Lee, Geonhee</au><au>Choi, Myungwoo</au><au>Jang, Huiwon</au><au>Lim, Yunsung</au><au>Gwang-Su, Kim</au><au>Sang-Hyeon Nam</au><au>Baek, Seung-Hyub</au><au>Song, Hyun-Cheol</au><au>Kim, Jihan</au><au>Chong-Yun, Kang</au><au>Jeong-O, Lee</au><au>Jeon, Seokwoo</au><au>Cho, Donghwi</au><au>Ji-Soo, Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-08-29</date><risdate>2023</risdate><volume>11</volume><issue>34</issue><spage>18195</spage><epage>18206</epage><pages>18195-18206</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (&lt;5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02160b</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2858293246
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Catalysts
Chemical detection
Chemical perception
Chemoreception
Environmental degradation
Environmental impact
Flash lamps
Heterostructures
Metal ions
Metal oxides
Nanoparticles
Neutralization
Pollutants
Pollution detection
Size distribution
Thermal engineering
Titanium dioxide
Water pollution
title Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20mixed%20catalysts%20on%20a%203D%20thin-shell%20TiO2%20for%20dual-modal%20chemical%20detection%20and%20neutralization&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shin,%20Joonchul&rft.date=2023-08-29&rft.volume=11&rft.issue=34&rft.spage=18195&rft.epage=18206&rft.pages=18195-18206&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02160b&rft_dat=%3Cproquest%3E2858293246%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858293246&rft_id=info:pmid/&rfr_iscdi=true