Loading…
Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization
Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous ch...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18206 |
container_issue | 34 |
container_start_page | 18195 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Shin, Joonchul Lee, Geonhee Choi, Myungwoo Jang, Huiwon Lim, Yunsung Gwang-Su, Kim Sang-Hyeon Nam Baek, Seung-Hyub Song, Hyun-Cheol Kim, Jihan Chong-Yun, Kang Jeong-O, Lee Jeon, Seokwoo Cho, Donghwi Ji-Soo, Jang |
description | Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small ( |
doi_str_mv | 10.1039/d3ta02160b |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858293246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858293246</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3</originalsourceid><addsrcrecordid>eNo9jU1Lw0AYhBdRsNRe_AULnqP7kf06lvpRodBLPZe3u29Myiap2Q1Yf72tinOZYWCeIeSWs3vOpHsIMgMTXLPdBZkIplhhSqcv_7O112SW0p6dZBnTzk3I-zz3beMhxiNtm08M1EOGeEw50b6jQOUjzXXTFanGGOmmWQta9QMNI8Si7QNE6mv8IdCAGX1uzrMu0A7HPEBsvuBc3ZCrCmLC2Z9Pydvz02axLFbrl9fFfFUcuJW5UJUPXvtS6ZIZ5AqVl4DcAPfOKAOlkZWyascsypIpqbxS0nDhUTtuHcopufvlHob-Y8SUt_t-HLrT5VZYZYWTotTyG-_KWIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858293246</pqid></control><display><type>article</type><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</creator><creatorcontrib>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</creatorcontrib><description>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (<5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02160b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical detection ; Chemical perception ; Chemoreception ; Environmental degradation ; Environmental impact ; Flash lamps ; Heterostructures ; Metal ions ; Metal oxides ; Nanoparticles ; Neutralization ; Pollutants ; Pollution detection ; Size distribution ; Thermal engineering ; Titanium dioxide ; Water pollution</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shin, Joonchul</creatorcontrib><creatorcontrib>Lee, Geonhee</creatorcontrib><creatorcontrib>Choi, Myungwoo</creatorcontrib><creatorcontrib>Jang, Huiwon</creatorcontrib><creatorcontrib>Lim, Yunsung</creatorcontrib><creatorcontrib>Gwang-Su, Kim</creatorcontrib><creatorcontrib>Sang-Hyeon Nam</creatorcontrib><creatorcontrib>Baek, Seung-Hyub</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Kim, Jihan</creatorcontrib><creatorcontrib>Chong-Yun, Kang</creatorcontrib><creatorcontrib>Jeong-O, Lee</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Cho, Donghwi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (<5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</description><subject>Catalysts</subject><subject>Chemical detection</subject><subject>Chemical perception</subject><subject>Chemoreception</subject><subject>Environmental degradation</subject><subject>Environmental impact</subject><subject>Flash lamps</subject><subject>Heterostructures</subject><subject>Metal ions</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Neutralization</subject><subject>Pollutants</subject><subject>Pollution detection</subject><subject>Size distribution</subject><subject>Thermal engineering</subject><subject>Titanium dioxide</subject><subject>Water pollution</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jU1Lw0AYhBdRsNRe_AULnqP7kf06lvpRodBLPZe3u29Myiap2Q1Yf72tinOZYWCeIeSWs3vOpHsIMgMTXLPdBZkIplhhSqcv_7O112SW0p6dZBnTzk3I-zz3beMhxiNtm08M1EOGeEw50b6jQOUjzXXTFanGGOmmWQta9QMNI8Si7QNE6mv8IdCAGX1uzrMu0A7HPEBsvuBc3ZCrCmLC2Z9Pydvz02axLFbrl9fFfFUcuJW5UJUPXvtS6ZIZ5AqVl4DcAPfOKAOlkZWyascsypIpqbxS0nDhUTtuHcopufvlHob-Y8SUt_t-HLrT5VZYZYWTotTyG-_KWIQ</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Shin, Joonchul</creator><creator>Lee, Geonhee</creator><creator>Choi, Myungwoo</creator><creator>Jang, Huiwon</creator><creator>Lim, Yunsung</creator><creator>Gwang-Su, Kim</creator><creator>Sang-Hyeon Nam</creator><creator>Baek, Seung-Hyub</creator><creator>Song, Hyun-Cheol</creator><creator>Kim, Jihan</creator><creator>Chong-Yun, Kang</creator><creator>Jeong-O, Lee</creator><creator>Jeon, Seokwoo</creator><creator>Cho, Donghwi</creator><creator>Ji-Soo, Jang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230829</creationdate><title>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</title><author>Shin, Joonchul ; Lee, Geonhee ; Choi, Myungwoo ; Jang, Huiwon ; Lim, Yunsung ; Gwang-Su, Kim ; Sang-Hyeon Nam ; Baek, Seung-Hyub ; Song, Hyun-Cheol ; Kim, Jihan ; Chong-Yun, Kang ; Jeong-O, Lee ; Jeon, Seokwoo ; Cho, Donghwi ; Ji-Soo, Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemical detection</topic><topic>Chemical perception</topic><topic>Chemoreception</topic><topic>Environmental degradation</topic><topic>Environmental impact</topic><topic>Flash lamps</topic><topic>Heterostructures</topic><topic>Metal ions</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Neutralization</topic><topic>Pollutants</topic><topic>Pollution detection</topic><topic>Size distribution</topic><topic>Thermal engineering</topic><topic>Titanium dioxide</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Joonchul</creatorcontrib><creatorcontrib>Lee, Geonhee</creatorcontrib><creatorcontrib>Choi, Myungwoo</creatorcontrib><creatorcontrib>Jang, Huiwon</creatorcontrib><creatorcontrib>Lim, Yunsung</creatorcontrib><creatorcontrib>Gwang-Su, Kim</creatorcontrib><creatorcontrib>Sang-Hyeon Nam</creatorcontrib><creatorcontrib>Baek, Seung-Hyub</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Kim, Jihan</creatorcontrib><creatorcontrib>Chong-Yun, Kang</creatorcontrib><creatorcontrib>Jeong-O, Lee</creatorcontrib><creatorcontrib>Jeon, Seokwoo</creatorcontrib><creatorcontrib>Cho, Donghwi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Joonchul</au><au>Lee, Geonhee</au><au>Choi, Myungwoo</au><au>Jang, Huiwon</au><au>Lim, Yunsung</au><au>Gwang-Su, Kim</au><au>Sang-Hyeon Nam</au><au>Baek, Seung-Hyub</au><au>Song, Hyun-Cheol</au><au>Kim, Jihan</au><au>Chong-Yun, Kang</au><au>Jeong-O, Lee</au><au>Jeon, Seokwoo</au><au>Cho, Donghwi</au><au>Ji-Soo, Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-08-29</date><risdate>2023</risdate><volume>11</volume><issue>34</issue><spage>18195</spage><epage>18206</epage><pages>18195-18206</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Environmental pollutants threaten millions of lives and state-of-the-art strategies, mostly based on surface catalytic activities to remediate environmental issues, have emerged. Despite their active capabilities, traditional schemes are only capable of a single function, either sensing hazardous chemicals or their reduction, limiting the identification of clear solutions to environmental problems. This study proposes a material engineering method that adopts both the detection and neutralization of environmental pollutants for remediation. This strategy exploits ultrafast flash lamp-driven thermal engineering to realize ultra-small (<5 nm) polyelemental nanoparticles with a uniform size distribution on a three-dimensional (3D) metal oxide nanostructure. Specifically, an intense pulse light treatment on highly periodic 3D thin-shell TiO2 triggers an intensive photothermal effect, enabling instant reduction of various surface-decorated metal ion precursors into an atomically mixed heterostructure. Experimental and computational studies were conducted to investigate the physicochemical reactions occurring on the heterometal catalysts. As a proof-of-concept, the universal photocatalytic utility of dual-mode photoactivated quaternary phase (PtPdNiCo) NPs incorporated into 3D TiO2 was demonstrated for gaseous chemical sensing and degradation of environmental pollutants in water.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02160b</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (34), p.18195-18206 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2858293246 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Catalysts Chemical detection Chemical perception Chemoreception Environmental degradation Environmental impact Flash lamps Heterostructures Metal ions Metal oxides Nanoparticles Neutralization Pollutants Pollution detection Size distribution Thermal engineering Titanium dioxide Water pollution |
title | Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20mixed%20catalysts%20on%20a%203D%20thin-shell%20TiO2%20for%20dual-modal%20chemical%20detection%20and%20neutralization&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shin,%20Joonchul&rft.date=2023-08-29&rft.volume=11&rft.issue=34&rft.spage=18195&rft.epage=18206&rft.pages=18195-18206&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02160b&rft_dat=%3Cproquest%3E2858293246%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-5fcdc6c456407e15e5c3ae17a1c9757a473f585b08e340535c553712ce69189e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858293246&rft_id=info:pmid/&rfr_iscdi=true |