Loading…
Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells
Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counte...
Saved in:
Published in: | Advanced functional materials 2023-08, Vol.33 (35), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3 |
container_end_page | n/a |
container_issue | 35 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Jin, Heon Farrar, Michael D. Ball, James M. Dasgupta, Akash Caprioglio, Pietro Narayanan, Sudarshan Oliver, Robert D. J. Rombach, Florine M. Putland, Benjamin W. J. Johnston, Michael B. Snaith, Henry J. |
description | Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.
This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them. |
doi_str_mv | 10.1002/adfm.202303012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858590848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858590848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZR2JdYodx4mzbAuFSuFHokjsrLFjoxQ3KXZC1R1H4AichaNwElIVlSWbmTfS--ZJD6FTggcE4-gcCrMYRDiimGIS7aEeSUgSUhzx_Z0mT4foyPs5xiRNadxDcmjbRVlBcAtVvQTXlMrqYFo12hlQJdhg1BqjXZDDupum7lS9-n7_GEFVPMMyyDUU3Tkrq6_Pe-3qN_9SNjp4qC24YKyt9cfowID1-uR399Hj5HI2vg7zu6vpeJiHipI0CkFJgiVnjBOdZVixTFLJioISliiZUEiVymjBODdEKs5kQUDHNJFcEZPEkvbR2fbv0tWvrfaNmNetq7pIEXHGWYZ5zDvXYOtSrvbeaSOWrlyAWwuCxaZHselR7HrsgGwLrEqr1_-4xfBicvPH_gDkk3oD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858590848</pqid></control><display><type>article</type><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</creator><creatorcontrib>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</creatorcontrib><description>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.
This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202303012</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Aluminum oxide ; Buffer layers ; Crystallization ; Devices ; Efficiency ; Energy gap ; Irradiance ; Lead ; lead‐tin ; low‐bandgap ; Materials science ; methylammonium‐free ; Nanoparticles ; Perovskites ; Photovoltaic cells ; Service life assessment ; shunt management ; Solar cells ; Stability ; Thick films ; Thickness ; Tin</subject><ispartof>Advanced functional materials, 2023-08, Vol.33 (35), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</citedby><cites>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</cites><orcidid>0000-0002-7686-6252 ; 0000-0001-8511-790X ; 0000-0001-7026-5010 ; 0000-0002-4372-897X ; 0000-0002-7942-293X ; 0000-0002-3465-2475 ; 0000-0003-4980-7940 ; 0000-0002-0301-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Heon</creatorcontrib><creatorcontrib>Farrar, Michael D.</creatorcontrib><creatorcontrib>Ball, James M.</creatorcontrib><creatorcontrib>Dasgupta, Akash</creatorcontrib><creatorcontrib>Caprioglio, Pietro</creatorcontrib><creatorcontrib>Narayanan, Sudarshan</creatorcontrib><creatorcontrib>Oliver, Robert D. J.</creatorcontrib><creatorcontrib>Rombach, Florine M.</creatorcontrib><creatorcontrib>Putland, Benjamin W. J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.
This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</description><subject>Absorbers</subject><subject>Aluminum oxide</subject><subject>Buffer layers</subject><subject>Crystallization</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Irradiance</subject><subject>Lead</subject><subject>lead‐tin</subject><subject>low‐bandgap</subject><subject>Materials science</subject><subject>methylammonium‐free</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Service life assessment</subject><subject>shunt management</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Tin</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1OwzAQhS0EEqWwZR2JdYodx4mzbAuFSuFHokjsrLFjoxQ3KXZC1R1H4AichaNwElIVlSWbmTfS--ZJD6FTggcE4-gcCrMYRDiimGIS7aEeSUgSUhzx_Z0mT4foyPs5xiRNadxDcmjbRVlBcAtVvQTXlMrqYFo12hlQJdhg1BqjXZDDupum7lS9-n7_GEFVPMMyyDUU3Tkrq6_Pe-3qN_9SNjp4qC24YKyt9cfowID1-uR399Hj5HI2vg7zu6vpeJiHipI0CkFJgiVnjBOdZVixTFLJioISliiZUEiVymjBODdEKs5kQUDHNJFcEZPEkvbR2fbv0tWvrfaNmNetq7pIEXHGWYZ5zDvXYOtSrvbeaSOWrlyAWwuCxaZHselR7HrsgGwLrEqr1_-4xfBicvPH_gDkk3oD</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Jin, Heon</creator><creator>Farrar, Michael D.</creator><creator>Ball, James M.</creator><creator>Dasgupta, Akash</creator><creator>Caprioglio, Pietro</creator><creator>Narayanan, Sudarshan</creator><creator>Oliver, Robert D. J.</creator><creator>Rombach, Florine M.</creator><creator>Putland, Benjamin W. J.</creator><creator>Johnston, Michael B.</creator><creator>Snaith, Henry J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7686-6252</orcidid><orcidid>https://orcid.org/0000-0001-8511-790X</orcidid><orcidid>https://orcid.org/0000-0001-7026-5010</orcidid><orcidid>https://orcid.org/0000-0002-4372-897X</orcidid><orcidid>https://orcid.org/0000-0002-7942-293X</orcidid><orcidid>https://orcid.org/0000-0002-3465-2475</orcidid><orcidid>https://orcid.org/0000-0003-4980-7940</orcidid><orcidid>https://orcid.org/0000-0002-0301-8033</orcidid></search><sort><creationdate>20230829</creationdate><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><author>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Aluminum oxide</topic><topic>Buffer layers</topic><topic>Crystallization</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Irradiance</topic><topic>Lead</topic><topic>lead‐tin</topic><topic>low‐bandgap</topic><topic>Materials science</topic><topic>methylammonium‐free</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Service life assessment</topic><topic>shunt management</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Heon</creatorcontrib><creatorcontrib>Farrar, Michael D.</creatorcontrib><creatorcontrib>Ball, James M.</creatorcontrib><creatorcontrib>Dasgupta, Akash</creatorcontrib><creatorcontrib>Caprioglio, Pietro</creatorcontrib><creatorcontrib>Narayanan, Sudarshan</creatorcontrib><creatorcontrib>Oliver, Robert D. J.</creatorcontrib><creatorcontrib>Rombach, Florine M.</creatorcontrib><creatorcontrib>Putland, Benjamin W. J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Heon</au><au>Farrar, Michael D.</au><au>Ball, James M.</au><au>Dasgupta, Akash</au><au>Caprioglio, Pietro</au><au>Narayanan, Sudarshan</au><au>Oliver, Robert D. J.</au><au>Rombach, Florine M.</au><au>Putland, Benjamin W. J.</au><au>Johnston, Michael B.</au><au>Snaith, Henry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2023-08-29</date><risdate>2023</risdate><volume>33</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.
This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202303012</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7686-6252</orcidid><orcidid>https://orcid.org/0000-0001-8511-790X</orcidid><orcidid>https://orcid.org/0000-0001-7026-5010</orcidid><orcidid>https://orcid.org/0000-0002-4372-897X</orcidid><orcidid>https://orcid.org/0000-0002-7942-293X</orcidid><orcidid>https://orcid.org/0000-0002-3465-2475</orcidid><orcidid>https://orcid.org/0000-0003-4980-7940</orcidid><orcidid>https://orcid.org/0000-0002-0301-8033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-08, Vol.33 (35), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2858590848 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Absorbers Aluminum oxide Buffer layers Crystallization Devices Efficiency Energy gap Irradiance Lead lead‐tin low‐bandgap Materials science methylammonium‐free Nanoparticles Perovskites Photovoltaic cells Service life assessment shunt management Solar cells Stability Thick films Thickness Tin |
title | Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alumina%20Nanoparticle%20Interfacial%20Buffer%20Layer%20for%20Low%E2%80%90Bandgap%20Lead%E2%80%90Tin%C2%A0Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Jin,%20Heon&rft.date=2023-08-29&rft.volume=33&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202303012&rft_dat=%3Cproquest_cross%3E2858590848%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858590848&rft_id=info:pmid/&rfr_iscdi=true |