Loading…

Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells

Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counte...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-08, Vol.33 (35), p.n/a
Main Authors: Jin, Heon, Farrar, Michael D., Ball, James M., Dasgupta, Akash, Caprioglio, Pietro, Narayanan, Sudarshan, Oliver, Robert D. J., Rombach, Florine M., Putland, Benjamin W. J., Johnston, Michael B., Snaith, Henry J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3
cites cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced functional materials
container_volume 33
creator Jin, Heon
Farrar, Michael D.
Ball, James M.
Dasgupta, Akash
Caprioglio, Pietro
Narayanan, Sudarshan
Oliver, Robert D. J.
Rombach, Florine M.
Putland, Benjamin W. J.
Johnston, Michael B.
Snaith, Henry J.
description Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h. This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.
doi_str_mv 10.1002/adfm.202303012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858590848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858590848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZR2JdYodx4mzbAuFSuFHokjsrLFjoxQ3KXZC1R1H4AichaNwElIVlSWbmTfS--ZJD6FTggcE4-gcCrMYRDiimGIS7aEeSUgSUhzx_Z0mT4foyPs5xiRNadxDcmjbRVlBcAtVvQTXlMrqYFo12hlQJdhg1BqjXZDDupum7lS9-n7_GEFVPMMyyDUU3Tkrq6_Pe-3qN_9SNjp4qC24YKyt9cfowID1-uR399Hj5HI2vg7zu6vpeJiHipI0CkFJgiVnjBOdZVixTFLJioISliiZUEiVymjBODdEKs5kQUDHNJFcEZPEkvbR2fbv0tWvrfaNmNetq7pIEXHGWYZ5zDvXYOtSrvbeaSOWrlyAWwuCxaZHselR7HrsgGwLrEqr1_-4xfBicvPH_gDkk3oD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858590848</pqid></control><display><type>article</type><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</creator><creatorcontrib>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</creatorcontrib><description>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h. This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202303012</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Aluminum oxide ; Buffer layers ; Crystallization ; Devices ; Efficiency ; Energy gap ; Irradiance ; Lead ; lead‐tin ; low‐bandgap ; Materials science ; methylammonium‐free ; Nanoparticles ; Perovskites ; Photovoltaic cells ; Service life assessment ; shunt management ; Solar cells ; Stability ; Thick films ; Thickness ; Tin</subject><ispartof>Advanced functional materials, 2023-08, Vol.33 (35), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</citedby><cites>FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</cites><orcidid>0000-0002-7686-6252 ; 0000-0001-8511-790X ; 0000-0001-7026-5010 ; 0000-0002-4372-897X ; 0000-0002-7942-293X ; 0000-0002-3465-2475 ; 0000-0003-4980-7940 ; 0000-0002-0301-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Heon</creatorcontrib><creatorcontrib>Farrar, Michael D.</creatorcontrib><creatorcontrib>Ball, James M.</creatorcontrib><creatorcontrib>Dasgupta, Akash</creatorcontrib><creatorcontrib>Caprioglio, Pietro</creatorcontrib><creatorcontrib>Narayanan, Sudarshan</creatorcontrib><creatorcontrib>Oliver, Robert D. J.</creatorcontrib><creatorcontrib>Rombach, Florine M.</creatorcontrib><creatorcontrib>Putland, Benjamin W. J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h. This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</description><subject>Absorbers</subject><subject>Aluminum oxide</subject><subject>Buffer layers</subject><subject>Crystallization</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Irradiance</subject><subject>Lead</subject><subject>lead‐tin</subject><subject>low‐bandgap</subject><subject>Materials science</subject><subject>methylammonium‐free</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Service life assessment</subject><subject>shunt management</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Tin</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1OwzAQhS0EEqWwZR2JdYodx4mzbAuFSuFHokjsrLFjoxQ3KXZC1R1H4AichaNwElIVlSWbmTfS--ZJD6FTggcE4-gcCrMYRDiimGIS7aEeSUgSUhzx_Z0mT4foyPs5xiRNadxDcmjbRVlBcAtVvQTXlMrqYFo12hlQJdhg1BqjXZDDupum7lS9-n7_GEFVPMMyyDUU3Tkrq6_Pe-3qN_9SNjp4qC24YKyt9cfowID1-uR399Hj5HI2vg7zu6vpeJiHipI0CkFJgiVnjBOdZVixTFLJioISliiZUEiVymjBODdEKs5kQUDHNJFcEZPEkvbR2fbv0tWvrfaNmNetq7pIEXHGWYZ5zDvXYOtSrvbeaSOWrlyAWwuCxaZHselR7HrsgGwLrEqr1_-4xfBicvPH_gDkk3oD</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Jin, Heon</creator><creator>Farrar, Michael D.</creator><creator>Ball, James M.</creator><creator>Dasgupta, Akash</creator><creator>Caprioglio, Pietro</creator><creator>Narayanan, Sudarshan</creator><creator>Oliver, Robert D. J.</creator><creator>Rombach, Florine M.</creator><creator>Putland, Benjamin W. J.</creator><creator>Johnston, Michael B.</creator><creator>Snaith, Henry J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7686-6252</orcidid><orcidid>https://orcid.org/0000-0001-8511-790X</orcidid><orcidid>https://orcid.org/0000-0001-7026-5010</orcidid><orcidid>https://orcid.org/0000-0002-4372-897X</orcidid><orcidid>https://orcid.org/0000-0002-7942-293X</orcidid><orcidid>https://orcid.org/0000-0002-3465-2475</orcidid><orcidid>https://orcid.org/0000-0003-4980-7940</orcidid><orcidid>https://orcid.org/0000-0002-0301-8033</orcidid></search><sort><creationdate>20230829</creationdate><title>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</title><author>Jin, Heon ; Farrar, Michael D. ; Ball, James M. ; Dasgupta, Akash ; Caprioglio, Pietro ; Narayanan, Sudarshan ; Oliver, Robert D. J. ; Rombach, Florine M. ; Putland, Benjamin W. J. ; Johnston, Michael B. ; Snaith, Henry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Aluminum oxide</topic><topic>Buffer layers</topic><topic>Crystallization</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Irradiance</topic><topic>Lead</topic><topic>lead‐tin</topic><topic>low‐bandgap</topic><topic>Materials science</topic><topic>methylammonium‐free</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Service life assessment</topic><topic>shunt management</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Heon</creatorcontrib><creatorcontrib>Farrar, Michael D.</creatorcontrib><creatorcontrib>Ball, James M.</creatorcontrib><creatorcontrib>Dasgupta, Akash</creatorcontrib><creatorcontrib>Caprioglio, Pietro</creatorcontrib><creatorcontrib>Narayanan, Sudarshan</creatorcontrib><creatorcontrib>Oliver, Robert D. J.</creatorcontrib><creatorcontrib>Rombach, Florine M.</creatorcontrib><creatorcontrib>Putland, Benjamin W. J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Heon</au><au>Farrar, Michael D.</au><au>Ball, James M.</au><au>Dasgupta, Akash</au><au>Caprioglio, Pietro</au><au>Narayanan, Sudarshan</au><au>Oliver, Robert D. J.</au><au>Rombach, Florine M.</au><au>Putland, Benjamin W. J.</au><au>Johnston, Michael B.</au><au>Snaith, Henry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2023-08-29</date><risdate>2023</risdate><volume>33</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Mixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h. This Study uses a non‐continuous layer of alumina nanoparticles on the surface of rough Pb:Sn perovskite films, resulting in improved conformality of the subsequent electron transport layer. This leads to the alumina nanoparticle layer acting as an interfacial buffer layer between the rough absorber and top metal electrodes and hinders unwanted direct contact between them.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202303012</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7686-6252</orcidid><orcidid>https://orcid.org/0000-0001-8511-790X</orcidid><orcidid>https://orcid.org/0000-0001-7026-5010</orcidid><orcidid>https://orcid.org/0000-0002-4372-897X</orcidid><orcidid>https://orcid.org/0000-0002-7942-293X</orcidid><orcidid>https://orcid.org/0000-0002-3465-2475</orcidid><orcidid>https://orcid.org/0000-0003-4980-7940</orcidid><orcidid>https://orcid.org/0000-0002-0301-8033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-08, Vol.33 (35), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2858590848
source Wiley-Blackwell Read & Publish Collection
subjects Absorbers
Aluminum oxide
Buffer layers
Crystallization
Devices
Efficiency
Energy gap
Irradiance
Lead
lead‐tin
low‐bandgap
Materials science
methylammonium‐free
Nanoparticles
Perovskites
Photovoltaic cells
Service life assessment
shunt management
Solar cells
Stability
Thick films
Thickness
Tin
title Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alumina%20Nanoparticle%20Interfacial%20Buffer%20Layer%20for%20Low%E2%80%90Bandgap%20Lead%E2%80%90Tin%C2%A0Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Jin,%20Heon&rft.date=2023-08-29&rft.volume=33&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202303012&rft_dat=%3Cproquest_cross%3E2858590848%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3172-acb10b85581e990c59b3b5dd3156cb63a7cc93d588f1bc85bd1ae436b8c1f64b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858590848&rft_id=info:pmid/&rfr_iscdi=true