Loading…

Demodulated time-direction synchrosqueezing transform and its applications in mechanical fault diagnosis

Time-frequency analysis is recognized as a dynamic tool to analyze the nonstationary signal. The synchrosqueezing transform is usually applied as a post-processing method to further improve the readability of the time-frequency representation. Synchrosqueezing transform is related to the reassignmen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2023-09, Vol.29 (17-18), p.3880-3892
Main Authors: Li, Xiaolu, Xiao, Baosen, Guo, MingAng, Liu, Baolin, Xia, Jingbo, Tu, Xiaotong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-frequency analysis is recognized as a dynamic tool to analyze the nonstationary signal. The synchrosqueezing transform is usually applied as a post-processing method to further improve the readability of the time-frequency representation. Synchrosqueezing transform is related to the reassignment method and can be performed in two directions, namely time direction and frequency direction. Frequency-direction reassignment helps to squeeze the slowly changing ridge. However, the time-direction reassignment is efficient to process the signal with rapid variation in instantaneous frequency. Thus, there exists a conflict in most of the time-frequency analysis methods while dealing with a signal containing both of these two components. In this study, a new method called demodulated time-direction synchrosqueezing transform is introduced, which is not only capable of achieving a higher compact TFR but also allow reconstructing the mode. In order to explain demodulated time-direction synchrosqueezing transform, a signal model is established in frequency domain. Then, a demodulated procedure is implemented to eliminate time-frequency analysis diffusion. Finally, time-direction reassignment is carried out to further enhance the energy concentration of the time-frequency analysis. The proposed demodulated time-direction synchrosqueezing transform method is evaluated by both simulation and experimental research. The results reveal that the performance of demodulated time-direction synchrosqueezing transform is better than the conventional time-frequency analysis methods, and it can be applied to the fault diagnosis in a machine.
ISSN:1077-5463
1741-2986
DOI:10.1177/10775463221106524