Loading…

Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis

This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Cheby...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2023-09, Vol.29 (17-18), p.4257-4274
Main Authors: Marzban, H.R., Korooyeh, S. Safdariyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13
container_end_page 4274
container_issue 17-18
container_start_page 4257
container_title Journal of vibration and control
container_volume 29
creator Marzban, H.R.
Korooyeh, S. Safdariyan
description This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.
doi_str_mv 10.1177/10775463221113924
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858618830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463221113924</sage_id><sourcerecordid>2858618830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqVwAHaWWKd47MROlqjiT6rUDawjxx23qdI42C5VOAKnxlGRukCsZjTzvaeZlyS3QGcAUt4DlTLPBGcMAHjJsrNkAjKDlJWFOI993KcjcJlceb-llGYZ0EnyvexDs1Mt0bYLzrbEGtI2HSpHjFM6NLZTbWrdCh1ZYasG4gcfcOfJoQkbokjfoMZD43F08EF1gRzpWnlcEdtFZo0dOtU2X3FwciXzDdaD3-DnyDb-OrkwqvV481unyfvT49v8JV0sn1_nD4tUM5GFNKdlwcDQQnJmxmdzJmqDVBa8BsypkEZjzTUXUnMmchHHBnRZGpEDU8Cnyd3Rt3f2Y48-VFu7d_EgX7EiLwQUBaeRgiOlnfXeoal6F4NyQwW0GiOv_kQeNbOjxqs1nlz_F_wAHBGCAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858618830</pqid></control><display><type>article</type><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><source>Sage Journals Online</source><creator>Marzban, H.R. ; Korooyeh, S. Safdariyan</creator><creatorcontrib>Marzban, H.R. ; Korooyeh, S. Safdariyan</creatorcontrib><description>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463221113924</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Chebyshev approximation ; Hilbert space ; Mathematical analysis ; Operators (mathematics) ; Optimal control ; Sobolev space ; System effectiveness</subject><ispartof>Journal of vibration and control, 2023-09, Vol.29 (17-18), p.4257-4274</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</cites><orcidid>0000-0002-6856-1360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Marzban, H.R.</creatorcontrib><creatorcontrib>Korooyeh, S. Safdariyan</creatorcontrib><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><title>Journal of vibration and control</title><description>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</description><subject>Chebyshev approximation</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Sobolev space</subject><subject>System effectiveness</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqVwAHaWWKd47MROlqjiT6rUDawjxx23qdI42C5VOAKnxlGRukCsZjTzvaeZlyS3QGcAUt4DlTLPBGcMAHjJsrNkAjKDlJWFOI993KcjcJlceb-llGYZ0EnyvexDs1Mt0bYLzrbEGtI2HSpHjFM6NLZTbWrdCh1ZYasG4gcfcOfJoQkbokjfoMZD43F08EF1gRzpWnlcEdtFZo0dOtU2X3FwciXzDdaD3-DnyDb-OrkwqvV481unyfvT49v8JV0sn1_nD4tUM5GFNKdlwcDQQnJmxmdzJmqDVBa8BsypkEZjzTUXUnMmchHHBnRZGpEDU8Cnyd3Rt3f2Y48-VFu7d_EgX7EiLwQUBaeRgiOlnfXeoal6F4NyQwW0GiOv_kQeNbOjxqs1nlz_F_wAHBGCAA</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Marzban, H.R.</creator><creator>Korooyeh, S. Safdariyan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6856-1360</orcidid></search><sort><creationdate>202309</creationdate><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><author>Marzban, H.R. ; Korooyeh, S. Safdariyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chebyshev approximation</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Sobolev space</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzban, H.R.</creatorcontrib><creatorcontrib>Korooyeh, S. Safdariyan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzban, H.R.</au><au>Korooyeh, S. Safdariyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</atitle><jtitle>Journal of vibration and control</jtitle><date>2023-09</date><risdate>2023</risdate><volume>29</volume><issue>17-18</issue><spage>4257</spage><epage>4274</epage><pages>4257-4274</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463221113924</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6856-1360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2023-09, Vol.29 (17-18), p.4257-4274
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2858618830
source Sage Journals Online
subjects Chebyshev approximation
Hilbert space
Mathematical analysis
Operators (mathematics)
Optimal control
Sobolev space
System effectiveness
title Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20linear%20fractional-order%20delay%20systems%20with%20a%20piecewise%20constant%20order%20based%20on%20a%20generalized%20fractional%20Chebyshev%20basis&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Marzban,%20H.R.&rft.date=2023-09&rft.volume=29&rft.issue=17-18&rft.spage=4257&rft.epage=4274&rft.pages=4257-4274&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463221113924&rft_dat=%3Cproquest_cross%3E2858618830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858618830&rft_id=info:pmid/&rft_sage_id=10.1177_10775463221113924&rfr_iscdi=true