Loading…
Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis
This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Cheby...
Saved in:
Published in: | Journal of vibration and control 2023-09, Vol.29 (17-18), p.4257-4274 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13 |
container_end_page | 4274 |
container_issue | 17-18 |
container_start_page | 4257 |
container_title | Journal of vibration and control |
container_volume | 29 |
creator | Marzban, H.R. Korooyeh, S. Safdariyan |
description | This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings. |
doi_str_mv | 10.1177/10775463221113924 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858618830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463221113924</sage_id><sourcerecordid>2858618830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqVwAHaWWKd47MROlqjiT6rUDawjxx23qdI42C5VOAKnxlGRukCsZjTzvaeZlyS3QGcAUt4DlTLPBGcMAHjJsrNkAjKDlJWFOI993KcjcJlceb-llGYZ0EnyvexDs1Mt0bYLzrbEGtI2HSpHjFM6NLZTbWrdCh1ZYasG4gcfcOfJoQkbokjfoMZD43F08EF1gRzpWnlcEdtFZo0dOtU2X3FwciXzDdaD3-DnyDb-OrkwqvV481unyfvT49v8JV0sn1_nD4tUM5GFNKdlwcDQQnJmxmdzJmqDVBa8BsypkEZjzTUXUnMmchHHBnRZGpEDU8Cnyd3Rt3f2Y48-VFu7d_EgX7EiLwQUBaeRgiOlnfXeoal6F4NyQwW0GiOv_kQeNbOjxqs1nlz_F_wAHBGCAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858618830</pqid></control><display><type>article</type><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><source>Sage Journals Online</source><creator>Marzban, H.R. ; Korooyeh, S. Safdariyan</creator><creatorcontrib>Marzban, H.R. ; Korooyeh, S. Safdariyan</creatorcontrib><description>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463221113924</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Chebyshev approximation ; Hilbert space ; Mathematical analysis ; Operators (mathematics) ; Optimal control ; Sobolev space ; System effectiveness</subject><ispartof>Journal of vibration and control, 2023-09, Vol.29 (17-18), p.4257-4274</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</cites><orcidid>0000-0002-6856-1360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Marzban, H.R.</creatorcontrib><creatorcontrib>Korooyeh, S. Safdariyan</creatorcontrib><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><title>Journal of vibration and control</title><description>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</description><subject>Chebyshev approximation</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Sobolev space</subject><subject>System effectiveness</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqVwAHaWWKd47MROlqjiT6rUDawjxx23qdI42C5VOAKnxlGRukCsZjTzvaeZlyS3QGcAUt4DlTLPBGcMAHjJsrNkAjKDlJWFOI993KcjcJlceb-llGYZ0EnyvexDs1Mt0bYLzrbEGtI2HSpHjFM6NLZTbWrdCh1ZYasG4gcfcOfJoQkbokjfoMZD43F08EF1gRzpWnlcEdtFZo0dOtU2X3FwciXzDdaD3-DnyDb-OrkwqvV481unyfvT49v8JV0sn1_nD4tUM5GFNKdlwcDQQnJmxmdzJmqDVBa8BsypkEZjzTUXUnMmchHHBnRZGpEDU8Cnyd3Rt3f2Y48-VFu7d_EgX7EiLwQUBaeRgiOlnfXeoal6F4NyQwW0GiOv_kQeNbOjxqs1nlz_F_wAHBGCAA</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Marzban, H.R.</creator><creator>Korooyeh, S. Safdariyan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6856-1360</orcidid></search><sort><creationdate>202309</creationdate><title>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</title><author>Marzban, H.R. ; Korooyeh, S. Safdariyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chebyshev approximation</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Sobolev space</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzban, H.R.</creatorcontrib><creatorcontrib>Korooyeh, S. Safdariyan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzban, H.R.</au><au>Korooyeh, S. Safdariyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis</atitle><jtitle>Journal of vibration and control</jtitle><date>2023-09</date><risdate>2023</risdate><volume>29</volume><issue>17-18</issue><spage>4257</spage><epage>4274</epage><pages>4257-4274</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This research studies optimal control of a new subclass of variable-order fractional delay systems whose its order is a piecewise constant function. This category of systems has not been discussed in the literature yet. An effective methodology based on a generalization of the fractional-order Chebyshev functions is offered for providing a solution with high level of precision. A detailed consideration regarding the convergence of the new framework is furnished. Moreover, two important estimates connected to the best approximation of the mentioned fractional basis in the Sobolev space and Hilbert space are achieved. Because direct implementation of the Riemann-Liouville integral operator (RLIP) leads to probably some serious drawbacks, such as numerical challenges, instability and unexpected oscillatory behaviour of the system under examination, a key integral operator connected to the basis under consideration is attained. The capacity and capability of the suggested numerical scheme are illustrated and verified through our numerical findings.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463221113924</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6856-1360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2023-09, Vol.29 (17-18), p.4257-4274 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_journals_2858618830 |
source | Sage Journals Online |
subjects | Chebyshev approximation Hilbert space Mathematical analysis Operators (mathematics) Optimal control Sobolev space System effectiveness |
title | Optimal control of linear fractional-order delay systems with a piecewise constant order based on a generalized fractional Chebyshev basis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20linear%20fractional-order%20delay%20systems%20with%20a%20piecewise%20constant%20order%20based%20on%20a%20generalized%20fractional%20Chebyshev%20basis&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Marzban,%20H.R.&rft.date=2023-09&rft.volume=29&rft.issue=17-18&rft.spage=4257&rft.epage=4274&rft.pages=4257-4274&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463221113924&rft_dat=%3Cproquest_cross%3E2858618830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-509821f08732f1113526bfe0783b1e5067fceb3c367c326563b1f1c99f6512a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858618830&rft_id=info:pmid/&rft_sage_id=10.1177_10775463221113924&rfr_iscdi=true |