Loading…

Fiber-Specific Electrostriction Response Under Intensity Modulation

Electrostriction in an optical fiber is introduced by interaction between the forward propagated optical signal and the acoustic standing waves in the radial direction resonating between the center of the core and the cladding circumference of the fiber. The response of electrostriction is dependent...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2023-09, Vol.41 (18), p.1-7
Main Authors: Al-Shaikhli, Fatima, O'Sullivan, Maurice, Hui, Rongqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrostriction in an optical fiber is introduced by interaction between the forward propagated optical signal and the acoustic standing waves in the radial direction resonating between the center of the core and the cladding circumference of the fiber. The response of electrostriction is dependent on fiber parameters, especially the mode field radius. We demonstrated a novel technique that can be used to characterize fiber properties by means of measuring their electrostriction response under intensity modulation. As the spectral envelope of electrostriction-induced propagation loss is anti-symmetrical, the signal to noise ratio can be significantly increased by subtracting the measured spectrum from its complex conjugate. We show that if the transversal field distribution of the fiber propagation mode is Gaussian, the envelope of the electrostriction-induced loss spectrum closely follows a Maxwellian distribution whose shape can be specified by a single parameter determined by the mode field radius.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2023.3276272