Loading…
Nonlinear trajectory tracking control of underactuated AUVs using the state-dependent Riccati equation (SDRE) with parameter perturbation
This paper deals with a novel direct state-dependent Riccati equation (SDRE) controller designed for trajectory tracking of underactuated autonomous underwater vehicles (AUVs) in the presence of parameter perturbation. Despite the traditional SDRE regulator control, the proposed closed-loop SDRE con...
Saved in:
Published in: | Nonlinear dynamics 2023-10, Vol.111 (19), p.18027-18041 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with a novel direct state-dependent Riccati equation (SDRE) controller designed for trajectory tracking of underactuated autonomous underwater vehicles (AUVs) in the presence of parameter perturbation. Despite the traditional SDRE regulator control, the proposed closed-loop SDRE controller design chiefly consists of two parts. First, by selecting a virtual reference point in front of the AUV system as the tracking output, the error variable control model in the earth-fixed reference frame is described. Second, the position errors are driven to the origin by introducing an integral model of first-order fed by the tracking error. The main advantage of the proposed control scheme is that the controller has a unified structure. Moreover, the algorithm is able to provide robustness with parameter perturbation because of its intrinsic robustness capability. Within the SDRE framework, the asymptotic stability of the closed-loop tracking system is also guaranteed. The robustness and effectiveness of the proposed methodology are verified by performing simulation experiments on an underactuated AUV. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-023-08778-z |