Loading…

A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation

A code \(C \colon \{0,1\}^k \to \{0,1\}^n\) is a \(q\)-locally decodable code (\(q\)-LDC) if one can recover any chosen bit \(b_i\) of the message \(b \in \{0,1\}^k\) with good confidence by randomly querying the encoding \(x := C(b)\) on at most \(q\) coordinates. Existing constructions of \(2\)-LD...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-08
Main Authors: Alrabiah, Omar, Venkatesan Guruswami, Kothari, Pravesh K, Manohar, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alrabiah, Omar
Venkatesan Guruswami
Kothari, Pravesh K
Manohar, Peter
description A code \(C \colon \{0,1\}^k \to \{0,1\}^n\) is a \(q\)-locally decodable code (\(q\)-LDC) if one can recover any chosen bit \(b_i\) of the message \(b \in \{0,1\}^k\) with good confidence by randomly querying the encoding \(x := C(b)\) on at most \(q\) coordinates. Existing constructions of \(2\)-LDCs achieve \(n = \exp(O(k))\), and lower bounds show that this is in fact tight. However, when \(q = 3\), far less is known: the best constructions achieve \(n = \exp(k^{o(1)})\), while the best known results only show a quadratic lower bound \(n \geq \tilde{\Omega}(k^2)\) on the blocklength. In this paper, we prove a near-cubic lower bound of \(n \geq \tilde{\Omega}(k^3)\) on the blocklength of \(3\)-query LDCs. This improves on the best known prior works by a polynomial factor in \(k\). Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22, HKM23] and, in particular, relies on bounding the spectral norm of appropriate Kikuchi matrices.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858804730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858804730</sourcerecordid><originalsourceid>FETCH-proquest_journals_28588047303</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNB6YJrRdFtWtIiobNdCRn2Cor6acYj-Phd9QKt7OOdOmCeVWvE4kHLGfGsbIYRcRzIMlcceGzijNjxxeV3Aid5oYEuuL6EiA4pfHZrP6Avdth_YYUGlzluEhEq0UBnqIMWuNrovR0zSC9ywcoMeauoXbFrp1qL_2zlbHvb35Mifhl4O7ZA15Ew_pkzGYRyLIFJC_ff6AmDJQU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858804730</pqid></control><display><type>article</type><title>A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation</title><source>Publicly Available Content (ProQuest)</source><creator>Alrabiah, Omar ; Venkatesan Guruswami ; Kothari, Pravesh K ; Manohar, Peter</creator><creatorcontrib>Alrabiah, Omar ; Venkatesan Guruswami ; Kothari, Pravesh K ; Manohar, Peter</creatorcontrib><description>A code \(C \colon \{0,1\}^k \to \{0,1\}^n\) is a \(q\)-locally decodable code (\(q\)-LDC) if one can recover any chosen bit \(b_i\) of the message \(b \in \{0,1\}^k\) with good confidence by randomly querying the encoding \(x := C(b)\) on at most \(q\) coordinates. Existing constructions of \(2\)-LDCs achieve \(n = \exp(O(k))\), and lower bounds show that this is in fact tight. However, when \(q = 3\), far less is known: the best constructions achieve \(n = \exp(k^{o(1)})\), while the best known results only show a quadratic lower bound \(n \geq \tilde{\Omega}(k^2)\) on the blocklength. In this paper, we prove a near-cubic lower bound of \(n \geq \tilde{\Omega}(k^3)\) on the blocklength of \(3\)-query LDCs. This improves on the best known prior works by a polynomial factor in \(k\). Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22, HKM23] and, in particular, relies on bounding the spectral norm of appropriate Kikuchi matrices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lower bounds ; Polynomials</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2858804730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alrabiah, Omar</creatorcontrib><creatorcontrib>Venkatesan Guruswami</creatorcontrib><creatorcontrib>Kothari, Pravesh K</creatorcontrib><creatorcontrib>Manohar, Peter</creatorcontrib><title>A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation</title><title>arXiv.org</title><description>A code \(C \colon \{0,1\}^k \to \{0,1\}^n\) is a \(q\)-locally decodable code (\(q\)-LDC) if one can recover any chosen bit \(b_i\) of the message \(b \in \{0,1\}^k\) with good confidence by randomly querying the encoding \(x := C(b)\) on at most \(q\) coordinates. Existing constructions of \(2\)-LDCs achieve \(n = \exp(O(k))\), and lower bounds show that this is in fact tight. However, when \(q = 3\), far less is known: the best constructions achieve \(n = \exp(k^{o(1)})\), while the best known results only show a quadratic lower bound \(n \geq \tilde{\Omega}(k^2)\) on the blocklength. In this paper, we prove a near-cubic lower bound of \(n \geq \tilde{\Omega}(k^3)\) on the blocklength of \(3\)-query LDCs. This improves on the best known prior works by a polynomial factor in \(k\). Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22, HKM23] and, in particular, relies on bounding the spectral norm of appropriate Kikuchi matrices.</description><subject>Lower bounds</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNB6YJrRdFtWtIiobNdCRn2Cor6acYj-Phd9QKt7OOdOmCeVWvE4kHLGfGsbIYRcRzIMlcceGzijNjxxeV3Aid5oYEuuL6EiA4pfHZrP6Avdth_YYUGlzluEhEq0UBnqIMWuNrovR0zSC9ywcoMeauoXbFrp1qL_2zlbHvb35Mifhl4O7ZA15Ew_pkzGYRyLIFJC_ff6AmDJQU0</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Alrabiah, Omar</creator><creator>Venkatesan Guruswami</creator><creator>Kothari, Pravesh K</creator><creator>Manohar, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230829</creationdate><title>A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation</title><author>Alrabiah, Omar ; Venkatesan Guruswami ; Kothari, Pravesh K ; Manohar, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28588047303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lower bounds</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Alrabiah, Omar</creatorcontrib><creatorcontrib>Venkatesan Guruswami</creatorcontrib><creatorcontrib>Kothari, Pravesh K</creatorcontrib><creatorcontrib>Manohar, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alrabiah, Omar</au><au>Venkatesan Guruswami</au><au>Kothari, Pravesh K</au><au>Manohar, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation</atitle><jtitle>arXiv.org</jtitle><date>2023-08-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A code \(C \colon \{0,1\}^k \to \{0,1\}^n\) is a \(q\)-locally decodable code (\(q\)-LDC) if one can recover any chosen bit \(b_i\) of the message \(b \in \{0,1\}^k\) with good confidence by randomly querying the encoding \(x := C(b)\) on at most \(q\) coordinates. Existing constructions of \(2\)-LDCs achieve \(n = \exp(O(k))\), and lower bounds show that this is in fact tight. However, when \(q = 3\), far less is known: the best constructions achieve \(n = \exp(k^{o(1)})\), while the best known results only show a quadratic lower bound \(n \geq \tilde{\Omega}(k^2)\) on the blocklength. In this paper, we prove a near-cubic lower bound of \(n \geq \tilde{\Omega}(k^3)\) on the blocklength of \(3\)-query LDCs. This improves on the best known prior works by a polynomial factor in \(k\). Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22, HKM23] and, in particular, relies on bounding the spectral norm of appropriate Kikuchi matrices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2858804730
source Publicly Available Content (ProQuest)
subjects Lower bounds
Polynomials
title A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Near-Cubic%20Lower%20Bound%20for%203-Query%20Locally%20Decodable%20Codes%20from%20Semirandom%20CSP%20Refutation&rft.jtitle=arXiv.org&rft.au=Alrabiah,%20Omar&rft.date=2023-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2858804730%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28588047303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858804730&rft_id=info:pmid/&rfr_iscdi=true