Loading…

Inertial enhancement of the polymer diffusive instability

Beneitez et al. (Phys. Rev. Fluids, 8, L101901, 2023) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess rectilinear viscoelastic shear flow using the FENE-P model when polymer stress diffusion is present. Here, we examine the impact of inertia on th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Couchman, Miles M P, Beneitez, Miguel, Page, Jacob, Kerswell, Rich R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Couchman, Miles M P
Beneitez, Miguel
Page, Jacob
Kerswell, Rich R
description Beneitez et al. (Phys. Rev. Fluids, 8, L101901, 2023) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess rectilinear viscoelastic shear flow using the FENE-P model when polymer stress diffusion is present. Here, we examine the impact of inertia on the PDI for both plane Couette (PCF) and plane Poiseuille (PPF) flows under varying Weissenberg number \(W\), polymer stress diffusivity \(\varepsilon\), solvent-to-total viscosity ratio \(\beta\), and Reynolds number \(Re\), considering the FENE-P and simpler Oldroyd-B constitutive relations. Both the prevalence of the instability in parameter space and the associated growth rates are found to significantly increase with \(Re\). For instance, as \(Re\) increases with \(\beta\) fixed, the instability emerges at progressively lower values of \(W\) and \(\varepsilon\) than in the inertialess limit, and the associated growth rates increase linearly with \(Re\) when all other parameters are fixed. For finite \(Re\), it is also demonstrated that the Schmidt number \(Sc=1/(\varepsilon Re)\) collapses curves of neutral stability obtained across various \(Re\) and \(\varepsilon\). The observed strengthening of PDI with inertia and the fact that stress diffusion is always present in time-stepping algorithms, either implicitly as part of the scheme or explicitly as a stabiliser, implies that the instability is likely operative in computational work using the popular Oldroyd-B and FENE-P constitutive models. The fundamental question now is whether PDI is physical and observable in experiments, or is instead an artifact of the constitutive models that must be suppressed.
doi_str_mv 10.48550/arxiv.2308.14879
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2858807300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858807300</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-7dd902b0944a933ac58570b9cd961ac58f3e38c8da31e8e2347f9d1a280b4d343</originalsourceid><addsrcrecordid>eNotjU1LAzEUAIMgWGp_gLeA560veUnzcpTiR6HgpfeS3SQ0ZZutm2yx_15FT8NcZhh7ELBUpDU8ufErXZYSgZZCkbE3bCYRRUNKyju2KOUIAHJlpNY4Y3aTw1iT63nIB5e7cAq58iHyegj8PPTXUxi5TzFOJV0CT7lU16Y-1es9u42uL2Hxzznbvb7s1u_N9uNts37eNs5q2xjvLcgWrFLOIrpOkzbQ2s7blfi1iAGpI-9QBAoSlYnWCycJWuVR4Zw9_mXP4_A5hVL3x2Ea889xL0kTgUEA_AZjA0iM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858807300</pqid></control><display><type>article</type><title>Inertial enhancement of the polymer diffusive instability</title><source>ProQuest - Publicly Available Content Database</source><creator>Couchman, Miles M P ; Beneitez, Miguel ; Page, Jacob ; Kerswell, Rich R</creator><creatorcontrib>Couchman, Miles M P ; Beneitez, Miguel ; Page, Jacob ; Kerswell, Rich R</creatorcontrib><description>Beneitez et al. (Phys. Rev. Fluids, 8, L101901, 2023) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess rectilinear viscoelastic shear flow using the FENE-P model when polymer stress diffusion is present. Here, we examine the impact of inertia on the PDI for both plane Couette (PCF) and plane Poiseuille (PPF) flows under varying Weissenberg number \(W\), polymer stress diffusivity \(\varepsilon\), solvent-to-total viscosity ratio \(\beta\), and Reynolds number \(Re\), considering the FENE-P and simpler Oldroyd-B constitutive relations. Both the prevalence of the instability in parameter space and the associated growth rates are found to significantly increase with \(Re\). For instance, as \(Re\) increases with \(\beta\) fixed, the instability emerges at progressively lower values of \(W\) and \(\varepsilon\) than in the inertialess limit, and the associated growth rates increase linearly with \(Re\) when all other parameters are fixed. For finite \(Re\), it is also demonstrated that the Schmidt number \(Sc=1/(\varepsilon Re)\) collapses curves of neutral stability obtained across various \(Re\) and \(\varepsilon\). The observed strengthening of PDI with inertia and the fact that stress diffusion is always present in time-stepping algorithms, either implicitly as part of the scheme or explicitly as a stabiliser, implies that the instability is likely operative in computational work using the popular Oldroyd-B and FENE-P constitutive models. The fundamental question now is whether PDI is physical and observable in experiments, or is instead an artifact of the constitutive models that must be suppressed.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2308.14879</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Constitutive models ; Constitutive relationships ; Flow stability ; Fluid flow ; Inertia ; Mathematical models ; Parameters ; Polymers ; Reynolds number ; Shear flow</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2858807300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Couchman, Miles M P</creatorcontrib><creatorcontrib>Beneitez, Miguel</creatorcontrib><creatorcontrib>Page, Jacob</creatorcontrib><creatorcontrib>Kerswell, Rich R</creatorcontrib><title>Inertial enhancement of the polymer diffusive instability</title><title>arXiv.org</title><description>Beneitez et al. (Phys. Rev. Fluids, 8, L101901, 2023) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess rectilinear viscoelastic shear flow using the FENE-P model when polymer stress diffusion is present. Here, we examine the impact of inertia on the PDI for both plane Couette (PCF) and plane Poiseuille (PPF) flows under varying Weissenberg number \(W\), polymer stress diffusivity \(\varepsilon\), solvent-to-total viscosity ratio \(\beta\), and Reynolds number \(Re\), considering the FENE-P and simpler Oldroyd-B constitutive relations. Both the prevalence of the instability in parameter space and the associated growth rates are found to significantly increase with \(Re\). For instance, as \(Re\) increases with \(\beta\) fixed, the instability emerges at progressively lower values of \(W\) and \(\varepsilon\) than in the inertialess limit, and the associated growth rates increase linearly with \(Re\) when all other parameters are fixed. For finite \(Re\), it is also demonstrated that the Schmidt number \(Sc=1/(\varepsilon Re)\) collapses curves of neutral stability obtained across various \(Re\) and \(\varepsilon\). The observed strengthening of PDI with inertia and the fact that stress diffusion is always present in time-stepping algorithms, either implicitly as part of the scheme or explicitly as a stabiliser, implies that the instability is likely operative in computational work using the popular Oldroyd-B and FENE-P constitutive models. The fundamental question now is whether PDI is physical and observable in experiments, or is instead an artifact of the constitutive models that must be suppressed.</description><subject>Algorithms</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Inertia</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Polymers</subject><subject>Reynolds number</subject><subject>Shear flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEUAIMgWGp_gLeA560veUnzcpTiR6HgpfeS3SQ0ZZutm2yx_15FT8NcZhh7ELBUpDU8ufErXZYSgZZCkbE3bCYRRUNKyju2KOUIAHJlpNY4Y3aTw1iT63nIB5e7cAq58iHyegj8PPTXUxi5TzFOJV0CT7lU16Y-1es9u42uL2Hxzznbvb7s1u_N9uNts37eNs5q2xjvLcgWrFLOIrpOkzbQ2s7blfi1iAGpI-9QBAoSlYnWCycJWuVR4Zw9_mXP4_A5hVL3x2Ea889xL0kTgUEA_AZjA0iM</recordid><startdate>20240216</startdate><enddate>20240216</enddate><creator>Couchman, Miles M P</creator><creator>Beneitez, Miguel</creator><creator>Page, Jacob</creator><creator>Kerswell, Rich R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240216</creationdate><title>Inertial enhancement of the polymer diffusive instability</title><author>Couchman, Miles M P ; Beneitez, Miguel ; Page, Jacob ; Kerswell, Rich R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-7dd902b0944a933ac58570b9cd961ac58f3e38c8da31e8e2347f9d1a280b4d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Inertia</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Polymers</topic><topic>Reynolds number</topic><topic>Shear flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Couchman, Miles M P</creatorcontrib><creatorcontrib>Beneitez, Miguel</creatorcontrib><creatorcontrib>Page, Jacob</creatorcontrib><creatorcontrib>Kerswell, Rich R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couchman, Miles M P</au><au>Beneitez, Miguel</au><au>Page, Jacob</au><au>Kerswell, Rich R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial enhancement of the polymer diffusive instability</atitle><jtitle>arXiv.org</jtitle><date>2024-02-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Beneitez et al. (Phys. Rev. Fluids, 8, L101901, 2023) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess rectilinear viscoelastic shear flow using the FENE-P model when polymer stress diffusion is present. Here, we examine the impact of inertia on the PDI for both plane Couette (PCF) and plane Poiseuille (PPF) flows under varying Weissenberg number \(W\), polymer stress diffusivity \(\varepsilon\), solvent-to-total viscosity ratio \(\beta\), and Reynolds number \(Re\), considering the FENE-P and simpler Oldroyd-B constitutive relations. Both the prevalence of the instability in parameter space and the associated growth rates are found to significantly increase with \(Re\). For instance, as \(Re\) increases with \(\beta\) fixed, the instability emerges at progressively lower values of \(W\) and \(\varepsilon\) than in the inertialess limit, and the associated growth rates increase linearly with \(Re\) when all other parameters are fixed. For finite \(Re\), it is also demonstrated that the Schmidt number \(Sc=1/(\varepsilon Re)\) collapses curves of neutral stability obtained across various \(Re\) and \(\varepsilon\). The observed strengthening of PDI with inertia and the fact that stress diffusion is always present in time-stepping algorithms, either implicitly as part of the scheme or explicitly as a stabiliser, implies that the instability is likely operative in computational work using the popular Oldroyd-B and FENE-P constitutive models. The fundamental question now is whether PDI is physical and observable in experiments, or is instead an artifact of the constitutive models that must be suppressed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2308.14879</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2858807300
source ProQuest - Publicly Available Content Database
subjects Algorithms
Constitutive models
Constitutive relationships
Flow stability
Fluid flow
Inertia
Mathematical models
Parameters
Polymers
Reynolds number
Shear flow
title Inertial enhancement of the polymer diffusive instability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20enhancement%20of%20the%20polymer%20diffusive%20instability&rft.jtitle=arXiv.org&rft.au=Couchman,%20Miles%20M%20P&rft.date=2024-02-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2308.14879&rft_dat=%3Cproquest%3E2858807300%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-7dd902b0944a933ac58570b9cd961ac58f3e38c8da31e8e2347f9d1a280b4d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2858807300&rft_id=info:pmid/&rfr_iscdi=true