Loading…

Electrochemical sensor based on bio-inspired molecularly imprinted polymer for sofosbuvir detection

The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional gr...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2023-08, Vol.13 (36), p.25129-25139
Main Authors: Soliman, Mahmoud A, Mahmoud, Amr M, Elzanfaly, Eman S, Abdel Fattah, Laila E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10 −11 M to 1.0 × 10 −13 M of SFB with a limit of detection of 3.1 × 10 −14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples. Fabrication of an electrochemical sensor for sofosbuvir detection using a bio-inspired molecularly imprinted polymer. The functional monomer is the synthetic "mussel-inspired" methyldopa.
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra03870j