Loading…

Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)

Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of metamorphic geology 2023-10, Vol.41 (8), p.1049-1079
Main Authors: Papeschi, Samuele, Rossetti, Federico, Walters, Jesse B.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1079
container_issue 8
container_start_page 1049
container_title Journal of metamorphic geology
container_volume 41
creator Papeschi, Samuele
Rossetti, Federico
Walters, Jesse B.
description Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.
doi_str_mv 10.1111/jmg.12736
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2859549851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859549851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3</originalsourceid><addsrcrecordid>eNotUctOIzEQtFYgbQgc-IOW9rIrMcGP8TCztwiRACLispxHTtzOODuvtT2K5sYnIPEl_NJ-CSbQl66uLlW3VIScMzpjsS53zXbG-JXIvpEJk1wmTLD0iEwoz0SSFrz4Tk6831HKBBfphLwtXbcPFXQG_o6qtQFBtRoW-P_5ZbWFTVV3zobOarBtZPmjiAtnNxVUdltF3Dv0fnBR_1p3-0gEbHp0KkQOGgyqxzq6-oPtYfaqaT6Y3zCHjfIIPgx6BOO6BkKFsFLeK3iKv8DPed1bmPeDavEC7oKqx1-n5Nio2uPZV5-Sp8XNn-vb5OFxeXc9f0h6LvMsUUrzzNCcGnllYqUCM5npwnAqcmlMQbVe8zxHyXOkRWEw2zCpOZcZ0rXUYkp-fPr2rvs3oA_lrhtcG0-WPJeFTItcsqi6_FTtbY1j2TvbKDeWjJYfcZQxjvIQR3m_Wh6AeAesRYZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859549851</pqid></control><display><type>article</type><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><source>Wiley</source><creator>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</creator><creatorcontrib>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</creatorcontrib><description>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12736</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Aluminum oxide ; chloritoid ; Composition effects ; Continental margins ; ferric iron ; Ferric oxide ; Fractionation ; Graphite ; Haematite ; Hematite ; Iron ; Kyanite ; Magnesium ; Modelling ; Northern Apennines ; Orogeny ; Phase equilibria ; phase equilibria modelling ; Pressure ; Schist ; Schists ; Silica ; Silicon dioxide ; Subduction ; Titanium dioxide ; Titration</subject><ispartof>Journal of metamorphic geology, 2023-10, Vol.41 (8), p.1049-1079</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5774-7119 ; 0000-0001-8071-7252 ; 0000-0002-1275-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Papeschi, Samuele</creatorcontrib><creatorcontrib>Rossetti, Federico</creatorcontrib><creatorcontrib>Walters, Jesse B.</creatorcontrib><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><title>Journal of metamorphic geology</title><description>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</description><subject>Aluminum oxide</subject><subject>chloritoid</subject><subject>Composition effects</subject><subject>Continental margins</subject><subject>ferric iron</subject><subject>Ferric oxide</subject><subject>Fractionation</subject><subject>Graphite</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iron</subject><subject>Kyanite</subject><subject>Magnesium</subject><subject>Modelling</subject><subject>Northern Apennines</subject><subject>Orogeny</subject><subject>Phase equilibria</subject><subject>phase equilibria modelling</subject><subject>Pressure</subject><subject>Schist</subject><subject>Schists</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Subduction</subject><subject>Titanium dioxide</subject><subject>Titration</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotUctOIzEQtFYgbQgc-IOW9rIrMcGP8TCztwiRACLispxHTtzOODuvtT2K5sYnIPEl_NJ-CSbQl66uLlW3VIScMzpjsS53zXbG-JXIvpEJk1wmTLD0iEwoz0SSFrz4Tk6831HKBBfphLwtXbcPFXQG_o6qtQFBtRoW-P_5ZbWFTVV3zobOarBtZPmjiAtnNxVUdltF3Dv0fnBR_1p3-0gEbHp0KkQOGgyqxzq6-oPtYfaqaT6Y3zCHjfIIPgx6BOO6BkKFsFLeK3iKv8DPed1bmPeDavEC7oKqx1-n5Nio2uPZV5-Sp8XNn-vb5OFxeXc9f0h6LvMsUUrzzNCcGnllYqUCM5npwnAqcmlMQbVe8zxHyXOkRWEw2zCpOZcZ0rXUYkp-fPr2rvs3oA_lrhtcG0-WPJeFTItcsqi6_FTtbY1j2TvbKDeWjJYfcZQxjvIQR3m_Wh6AeAesRYZ1</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Papeschi, Samuele</creator><creator>Rossetti, Federico</creator><creator>Walters, Jesse B.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-5774-7119</orcidid><orcidid>https://orcid.org/0000-0001-8071-7252</orcidid><orcidid>https://orcid.org/0000-0002-1275-8826</orcidid></search><sort><creationdate>202310</creationdate><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><author>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>chloritoid</topic><topic>Composition effects</topic><topic>Continental margins</topic><topic>ferric iron</topic><topic>Ferric oxide</topic><topic>Fractionation</topic><topic>Graphite</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iron</topic><topic>Kyanite</topic><topic>Magnesium</topic><topic>Modelling</topic><topic>Northern Apennines</topic><topic>Orogeny</topic><topic>Phase equilibria</topic><topic>phase equilibria modelling</topic><topic>Pressure</topic><topic>Schist</topic><topic>Schists</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Subduction</topic><topic>Titanium dioxide</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papeschi, Samuele</creatorcontrib><creatorcontrib>Rossetti, Federico</creatorcontrib><creatorcontrib>Walters, Jesse B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papeschi, Samuele</au><au>Rossetti, Federico</au><au>Walters, Jesse B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2023-10</date><risdate>2023</risdate><volume>41</volume><issue>8</issue><spage>1049</spage><epage>1079</epage><pages>1049-1079</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12736</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5774-7119</orcidid><orcidid>https://orcid.org/0000-0001-8071-7252</orcidid><orcidid>https://orcid.org/0000-0002-1275-8826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4929
ispartof Journal of metamorphic geology, 2023-10, Vol.41 (8), p.1049-1079
issn 0263-4929
1525-1314
language eng
recordid cdi_proquest_journals_2859549851
source Wiley
subjects Aluminum oxide
chloritoid
Composition effects
Continental margins
ferric iron
Ferric oxide
Fractionation
Graphite
Haematite
Hematite
Iron
Kyanite
Magnesium
Modelling
Northern Apennines
Orogeny
Phase equilibria
phase equilibria modelling
Pressure
Schist
Schists
Silica
Silicon dioxide
Subduction
Titanium dioxide
Titration
title Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20kyanite%20and%20Fe%E2%80%90Mg%20chloritoid%20in%20Fe2O3%E2%80%90rich%20high%E2%80%90pressure%E2%80%93low%E2%80%90temperature%20metapelites%20and%20metapsammites:%20A%20case%20study%20from%20the%20Massa%20Unit%20(Alpi%20Apuane,%20Italy)&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=Papeschi,%20Samuele&rft.date=2023-10&rft.volume=41&rft.issue=8&rft.spage=1049&rft.epage=1079&rft.pages=1049-1079&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12736&rft_dat=%3Cproquest_wiley%3E2859549851%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859549851&rft_id=info:pmid/&rfr_iscdi=true