Loading…
Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)
Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, g...
Saved in:
Published in: | Journal of metamorphic geology 2023-10, Vol.41 (8), p.1049-1079 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1079 |
container_issue | 8 |
container_start_page | 1049 |
container_title | Journal of metamorphic geology |
container_volume | 41 |
creator | Papeschi, Samuele Rossetti, Federico Walters, Jesse B. |
description | Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge. |
doi_str_mv | 10.1111/jmg.12736 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2859549851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2859549851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3</originalsourceid><addsrcrecordid>eNotUctOIzEQtFYgbQgc-IOW9rIrMcGP8TCztwiRACLispxHTtzOODuvtT2K5sYnIPEl_NJ-CSbQl66uLlW3VIScMzpjsS53zXbG-JXIvpEJk1wmTLD0iEwoz0SSFrz4Tk6831HKBBfphLwtXbcPFXQG_o6qtQFBtRoW-P_5ZbWFTVV3zobOarBtZPmjiAtnNxVUdltF3Dv0fnBR_1p3-0gEbHp0KkQOGgyqxzq6-oPtYfaqaT6Y3zCHjfIIPgx6BOO6BkKFsFLeK3iKv8DPed1bmPeDavEC7oKqx1-n5Nio2uPZV5-Sp8XNn-vb5OFxeXc9f0h6LvMsUUrzzNCcGnllYqUCM5npwnAqcmlMQbVe8zxHyXOkRWEw2zCpOZcZ0rXUYkp-fPr2rvs3oA_lrhtcG0-WPJeFTItcsqi6_FTtbY1j2TvbKDeWjJYfcZQxjvIQR3m_Wh6AeAesRYZ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859549851</pqid></control><display><type>article</type><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><source>Wiley</source><creator>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</creator><creatorcontrib>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</creatorcontrib><description>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12736</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Aluminum oxide ; chloritoid ; Composition effects ; Continental margins ; ferric iron ; Ferric oxide ; Fractionation ; Graphite ; Haematite ; Hematite ; Iron ; Kyanite ; Magnesium ; Modelling ; Northern Apennines ; Orogeny ; Phase equilibria ; phase equilibria modelling ; Pressure ; Schist ; Schists ; Silica ; Silicon dioxide ; Subduction ; Titanium dioxide ; Titration</subject><ispartof>Journal of metamorphic geology, 2023-10, Vol.41 (8), p.1049-1079</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5774-7119 ; 0000-0001-8071-7252 ; 0000-0002-1275-8826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Papeschi, Samuele</creatorcontrib><creatorcontrib>Rossetti, Federico</creatorcontrib><creatorcontrib>Walters, Jesse B.</creatorcontrib><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><title>Journal of metamorphic geology</title><description>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</description><subject>Aluminum oxide</subject><subject>chloritoid</subject><subject>Composition effects</subject><subject>Continental margins</subject><subject>ferric iron</subject><subject>Ferric oxide</subject><subject>Fractionation</subject><subject>Graphite</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Iron</subject><subject>Kyanite</subject><subject>Magnesium</subject><subject>Modelling</subject><subject>Northern Apennines</subject><subject>Orogeny</subject><subject>Phase equilibria</subject><subject>phase equilibria modelling</subject><subject>Pressure</subject><subject>Schist</subject><subject>Schists</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Subduction</subject><subject>Titanium dioxide</subject><subject>Titration</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotUctOIzEQtFYgbQgc-IOW9rIrMcGP8TCztwiRACLispxHTtzOODuvtT2K5sYnIPEl_NJ-CSbQl66uLlW3VIScMzpjsS53zXbG-JXIvpEJk1wmTLD0iEwoz0SSFrz4Tk6831HKBBfphLwtXbcPFXQG_o6qtQFBtRoW-P_5ZbWFTVV3zobOarBtZPmjiAtnNxVUdltF3Dv0fnBR_1p3-0gEbHp0KkQOGgyqxzq6-oPtYfaqaT6Y3zCHjfIIPgx6BOO6BkKFsFLeK3iKv8DPed1bmPeDavEC7oKqx1-n5Nio2uPZV5-Sp8XNn-vb5OFxeXc9f0h6LvMsUUrzzNCcGnllYqUCM5npwnAqcmlMQbVe8zxHyXOkRWEw2zCpOZcZ0rXUYkp-fPr2rvs3oA_lrhtcG0-WPJeFTItcsqi6_FTtbY1j2TvbKDeWjJYfcZQxjvIQR3m_Wh6AeAesRYZ1</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Papeschi, Samuele</creator><creator>Rossetti, Federico</creator><creator>Walters, Jesse B.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-5774-7119</orcidid><orcidid>https://orcid.org/0000-0001-8071-7252</orcidid><orcidid>https://orcid.org/0000-0002-1275-8826</orcidid></search><sort><creationdate>202310</creationdate><title>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</title><author>Papeschi, Samuele ; Rossetti, Federico ; Walters, Jesse B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>chloritoid</topic><topic>Composition effects</topic><topic>Continental margins</topic><topic>ferric iron</topic><topic>Ferric oxide</topic><topic>Fractionation</topic><topic>Graphite</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Iron</topic><topic>Kyanite</topic><topic>Magnesium</topic><topic>Modelling</topic><topic>Northern Apennines</topic><topic>Orogeny</topic><topic>Phase equilibria</topic><topic>phase equilibria modelling</topic><topic>Pressure</topic><topic>Schist</topic><topic>Schists</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Subduction</topic><topic>Titanium dioxide</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papeschi, Samuele</creatorcontrib><creatorcontrib>Rossetti, Federico</creatorcontrib><creatorcontrib>Walters, Jesse B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papeschi, Samuele</au><au>Rossetti, Federico</au><au>Walters, Jesse B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy)</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2023-10</date><risdate>2023</risdate><volume>41</volume><issue>8</issue><spage>1049</spage><epage>1079</epage><pages>1049-1079</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>Chloritoid and kyanite coexist in metapelites from the high‐pressure/low‐temperature Massa Unit in the Alpi Apuane metamorphic complex (Northern Apennines, Italy). The composition of chloritoid is extremely variable throughout the Massa Unit. Fe‐chloritoid occurs in association with hematite‐free, graphite‐bearing schists, whereas strongly zoned Fe‐Mg chloritoid is found with hematite and kyanite. We investigated the effect of different bulk Fe2O3 contents in controlling chloritoid composition through phase equilibria modelling of four selected samples, representative of the different chloritoid‐bearing parageneses found in the Massa Unit. The ferric iron content, measured through wet chemical titration, ranges from 0 (graphite‐chloritoid schist) to 73% of the total iron (hematite‐chloritoid schist). We show that Mg‐rich chloritoid compositions and stability of kyanite at greenschist to blueschist facies conditions can be reproduced in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system only considering the presence of significant amounts of ferric iron as part of the bulk composition. The stabilization of kyanite at lower grade is directly linked to the presence of Fe2O3, which renders the reactive bulk rock composition effectively enriched in Al2O3 with respect to Fe and Mg. We also document that high Fe2O3 contents exacerbate the effect of chloritoid fractionation, producing strongly zoned Fe‐Mg‐chloritoid grains. Finally, the P–T modelling of the Massa Units performed in this study allows, for the first time, the recognition of a two‐stage evolution at peak conditions, with an earlier pressure peak (1.2–1.3 GPa at 350–400°C), and a later thermal peak (0.7–1.1 GPa at 440–480°C), compatible with subduction, underthrusting and exhumation of the Adria continental margin during growth of the Northern Apennine orogenic wedge.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12736</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5774-7119</orcidid><orcidid>https://orcid.org/0000-0001-8071-7252</orcidid><orcidid>https://orcid.org/0000-0002-1275-8826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4929 |
ispartof | Journal of metamorphic geology, 2023-10, Vol.41 (8), p.1049-1079 |
issn | 0263-4929 1525-1314 |
language | eng |
recordid | cdi_proquest_journals_2859549851 |
source | Wiley |
subjects | Aluminum oxide chloritoid Composition effects Continental margins ferric iron Ferric oxide Fractionation Graphite Haematite Hematite Iron Kyanite Magnesium Modelling Northern Apennines Orogeny Phase equilibria phase equilibria modelling Pressure Schist Schists Silica Silicon dioxide Subduction Titanium dioxide Titration |
title | Growth of kyanite and Fe‐Mg chloritoid in Fe2O3‐rich high‐pressure–low‐temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20kyanite%20and%20Fe%E2%80%90Mg%20chloritoid%20in%20Fe2O3%E2%80%90rich%20high%E2%80%90pressure%E2%80%93low%E2%80%90temperature%20metapelites%20and%20metapsammites:%20A%20case%20study%20from%20the%20Massa%20Unit%20(Alpi%20Apuane,%20Italy)&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=Papeschi,%20Samuele&rft.date=2023-10&rft.volume=41&rft.issue=8&rft.spage=1049&rft.epage=1079&rft.pages=1049-1079&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12736&rft_dat=%3Cproquest_wiley%3E2859549851%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2586-aad26f080f57ffff43e656d9f20385ff90ddb288e528e099fe6c15d2256e0b5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859549851&rft_id=info:pmid/&rfr_iscdi=true |