Loading…

Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm

When estimating soil organic carbon (SOC) using visible and near-infrared (Vis-NIR) spectra measured in situ, the interference of soil moisture content (SMC) needs to be eliminated. The existing SMC removal methods are mainly based on spectral transformation, but they change the original form of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2023-01, Vol.16, p.1-16
Main Authors: Zhao, Wudi, Wu, Zhilu, Yin, Zhendong, Li, Dasen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3
cites cdi_FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3
container_end_page 16
container_issue
container_start_page 1
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 16
creator Zhao, Wudi
Wu, Zhilu
Yin, Zhendong
Li, Dasen
description When estimating soil organic carbon (SOC) using visible and near-infrared (Vis-NIR) spectra measured in situ, the interference of soil moisture content (SMC) needs to be eliminated. The existing SMC removal methods are mainly based on spectral transformation, but they change the original form of the soil spectrum. In this paper, a new deep learning-based SMC influence removal network (MIRNet) is proposed to establish the relationship between the spectra of moist soil and that of dry soil. This method constructs a spectral extraction module (SEM) with two one-dimensional (1-D) ghost modules to extract soil spectral characteristics and a context extraction module (CEM) with a two-layer dilated convolutional neural network (DiCNN) to extract the context information of the spectra. Then these extracted features are combined to reconstruct the SMC influence with a two-layer deconvolution using residual learning (Res). Finally, a new loss function that combining spectral distance and spectral shape measurement (D-S loss) is proposed. The input of MIRNet is the moist soil spectra, and the output is the dry soil spectra. Black soil collected from Harbin and yellow-brown soil collected from Nanjing are selected as the research objects. The R^{2} reaches 0.703, 0.747, 0.907, 0.892, 0.866, 0.907, and 0.926, respectively, when using spectra processed by external parameter orthogonalization (EPO), orthogonal signal correction (OSC), support vector regression (SVR), convolutional neural network (CNN), deep neural network (DNN), denoising convolutional neural network (DnCNN), and MIRNet. Therefore, the proposed MIRNet achieves competitive results compared with these state-of-the-art methods.
doi_str_mv 10.1109/JSTARS.2023.3287583
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2859716815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10157982</ieee_id><doaj_id>oai_doaj_org_article_a97f39003e05468cbf324218eaacc0b2</doaj_id><sourcerecordid>2859716815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3</originalsourceid><addsrcrecordid>eNpNUU2P0zAQtRBIlMIvgIMlzim2x07iY1UKFBVWaheuluOMi6tuXGxHiH9PSlaI00hv5n1oHiGvOVtxzvS7z8f79eG4EkzACkTbqBaekIXgildcgXpKFlyDrrhk8jl5kfOZsVo0GhZkPGA_ujCc6JcYchkT0q336EqmcaDHGC70Lp3sEBzd2NRN2CYOBYdCt7mEB1vCBIWBfg-5-ro70ON14iZLf4Xyg1r6HvFK92jTcLNYX04xTYuHl-SZt5eMrx7nknz7sL3ffKr2dx93m_W-cpLpUtlGYQ-yVk1XK1eD9oz1XApdg0PBmIfe6dr3nXWiA-E7ZKwBr5yU4Jl0sCS7WbeP9myuaQqcfptog_kLxHQyNpXgLmisbjxoxgCZknXrOg9CCt6itc6xTkxab2eta4o_R8zFnOOYhim-Ea3SDa_b6ddLAvOVSzHnhP6fK2fm1pWZuzK3rsxjVxPrzcwKiPgfg6tGtwL-ANE1kEY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859716815</pqid></control><display><type>article</type><title>Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm</title><source>Alma/SFX Local Collection</source><creator>Zhao, Wudi ; Wu, Zhilu ; Yin, Zhendong ; Li, Dasen</creator><creatorcontrib>Zhao, Wudi ; Wu, Zhilu ; Yin, Zhendong ; Li, Dasen</creatorcontrib><description>When estimating soil organic carbon (SOC) using visible and near-infrared (Vis-NIR) spectra measured in situ, the interference of soil moisture content (SMC) needs to be eliminated. The existing SMC removal methods are mainly based on spectral transformation, but they change the original form of the soil spectrum. In this paper, a new deep learning-based SMC influence removal network (MIRNet) is proposed to establish the relationship between the spectra of moist soil and that of dry soil. This method constructs a spectral extraction module (SEM) with two one-dimensional (1-D) ghost modules to extract soil spectral characteristics and a context extraction module (CEM) with a two-layer dilated convolutional neural network (DiCNN) to extract the context information of the spectra. Then these extracted features are combined to reconstruct the SMC influence with a two-layer deconvolution using residual learning (Res). Finally, a new loss function that combining spectral distance and spectral shape measurement (D-S loss) is proposed. The input of MIRNet is the moist soil spectra, and the output is the dry soil spectra. Black soil collected from Harbin and yellow-brown soil collected from Nanjing are selected as the research objects. The &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R^{2}&lt;/tex-math&gt;&lt;/inline-formula&gt; reaches 0.703, 0.747, 0.907, 0.892, 0.866, 0.907, and 0.926, respectively, when using spectra processed by external parameter orthogonalization (EPO), orthogonal signal correction (OSC), support vector regression (SVR), convolutional neural network (CNN), deep neural network (DNN), denoising convolutional neural network (DnCNN), and MIRNet. Therefore, the proposed MIRNet achieves competitive results compared with these state-of-the-art methods.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3287583</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Brown soils ; Carbon content ; Context ; Convolutional neural networks ; Deep learning ; Estimation ; Feature extraction ; Information processing ; Infrared spectra ; Infrared spectroscopy ; Machine learning ; Modules ; Moisture ; Moisture content ; Moisture effects ; Near infrared radiation ; Neural networks ; Organic carbon ; Organic soils ; Removal ; Soil ; Soil measurements ; Soil moisture ; soil moisture content (SMC) influence removal ; soil moisture content influence removal ; soil organic carbon ; soil organic carbon (SOC) ; Spectra ; Support vector machines ; VIS-NIR spectra ; visible and near-infrared (Vis-NIR) spectra ; Water content</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023-01, Vol.16, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3</citedby><cites>FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3</cites><orcidid>0000-0002-1109-268X ; 0000-0002-3402-9093 ; 0000-0002-7567-9084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Wudi</creatorcontrib><creatorcontrib>Wu, Zhilu</creatorcontrib><creatorcontrib>Yin, Zhendong</creatorcontrib><creatorcontrib>Li, Dasen</creatorcontrib><title>Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>When estimating soil organic carbon (SOC) using visible and near-infrared (Vis-NIR) spectra measured in situ, the interference of soil moisture content (SMC) needs to be eliminated. The existing SMC removal methods are mainly based on spectral transformation, but they change the original form of the soil spectrum. In this paper, a new deep learning-based SMC influence removal network (MIRNet) is proposed to establish the relationship between the spectra of moist soil and that of dry soil. This method constructs a spectral extraction module (SEM) with two one-dimensional (1-D) ghost modules to extract soil spectral characteristics and a context extraction module (CEM) with a two-layer dilated convolutional neural network (DiCNN) to extract the context information of the spectra. Then these extracted features are combined to reconstruct the SMC influence with a two-layer deconvolution using residual learning (Res). Finally, a new loss function that combining spectral distance and spectral shape measurement (D-S loss) is proposed. The input of MIRNet is the moist soil spectra, and the output is the dry soil spectra. Black soil collected from Harbin and yellow-brown soil collected from Nanjing are selected as the research objects. The &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R^{2}&lt;/tex-math&gt;&lt;/inline-formula&gt; reaches 0.703, 0.747, 0.907, 0.892, 0.866, 0.907, and 0.926, respectively, when using spectra processed by external parameter orthogonalization (EPO), orthogonal signal correction (OSC), support vector regression (SVR), convolutional neural network (CNN), deep neural network (DNN), denoising convolutional neural network (DnCNN), and MIRNet. Therefore, the proposed MIRNet achieves competitive results compared with these state-of-the-art methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brown soils</subject><subject>Carbon content</subject><subject>Context</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Information processing</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Removal</subject><subject>Soil</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>soil moisture content (SMC) influence removal</subject><subject>soil moisture content influence removal</subject><subject>soil organic carbon</subject><subject>soil organic carbon (SOC)</subject><subject>Spectra</subject><subject>Support vector machines</subject><subject>VIS-NIR spectra</subject><subject>visible and near-infrared (Vis-NIR) spectra</subject><subject>Water content</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2P0zAQtRBIlMIvgIMlzim2x07iY1UKFBVWaheuluOMi6tuXGxHiH9PSlaI00hv5n1oHiGvOVtxzvS7z8f79eG4EkzACkTbqBaekIXgildcgXpKFlyDrrhk8jl5kfOZsVo0GhZkPGA_ujCc6JcYchkT0q336EqmcaDHGC70Lp3sEBzd2NRN2CYOBYdCt7mEB1vCBIWBfg-5-ro70ON14iZLf4Xyg1r6HvFK92jTcLNYX04xTYuHl-SZt5eMrx7nknz7sL3ffKr2dx93m_W-cpLpUtlGYQ-yVk1XK1eD9oz1XApdg0PBmIfe6dr3nXWiA-E7ZKwBr5yU4Jl0sCS7WbeP9myuaQqcfptog_kLxHQyNpXgLmisbjxoxgCZknXrOg9CCt6itc6xTkxab2eta4o_R8zFnOOYhim-Ea3SDa_b6ddLAvOVSzHnhP6fK2fm1pWZuzK3rsxjVxPrzcwKiPgfg6tGtwL-ANE1kEY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhao, Wudi</creator><creator>Wu, Zhilu</creator><creator>Yin, Zhendong</creator><creator>Li, Dasen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1109-268X</orcidid><orcidid>https://orcid.org/0000-0002-3402-9093</orcidid><orcidid>https://orcid.org/0000-0002-7567-9084</orcidid></search><sort><creationdate>20230101</creationdate><title>Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm</title><author>Zhao, Wudi ; Wu, Zhilu ; Yin, Zhendong ; Li, Dasen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brown soils</topic><topic>Carbon content</topic><topic>Context</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Information processing</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Removal</topic><topic>Soil</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>soil moisture content (SMC) influence removal</topic><topic>soil moisture content influence removal</topic><topic>soil organic carbon</topic><topic>soil organic carbon (SOC)</topic><topic>Spectra</topic><topic>Support vector machines</topic><topic>VIS-NIR spectra</topic><topic>visible and near-infrared (Vis-NIR) spectra</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wudi</creatorcontrib><creatorcontrib>Wu, Zhilu</creatorcontrib><creatorcontrib>Yin, Zhendong</creatorcontrib><creatorcontrib>Li, Dasen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wudi</au><au>Wu, Zhilu</au><au>Yin, Zhendong</au><au>Li, Dasen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>16</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>When estimating soil organic carbon (SOC) using visible and near-infrared (Vis-NIR) spectra measured in situ, the interference of soil moisture content (SMC) needs to be eliminated. The existing SMC removal methods are mainly based on spectral transformation, but they change the original form of the soil spectrum. In this paper, a new deep learning-based SMC influence removal network (MIRNet) is proposed to establish the relationship between the spectra of moist soil and that of dry soil. This method constructs a spectral extraction module (SEM) with two one-dimensional (1-D) ghost modules to extract soil spectral characteristics and a context extraction module (CEM) with a two-layer dilated convolutional neural network (DiCNN) to extract the context information of the spectra. Then these extracted features are combined to reconstruct the SMC influence with a two-layer deconvolution using residual learning (Res). Finally, a new loss function that combining spectral distance and spectral shape measurement (D-S loss) is proposed. The input of MIRNet is the moist soil spectra, and the output is the dry soil spectra. Black soil collected from Harbin and yellow-brown soil collected from Nanjing are selected as the research objects. The &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;R^{2}&lt;/tex-math&gt;&lt;/inline-formula&gt; reaches 0.703, 0.747, 0.907, 0.892, 0.866, 0.907, and 0.926, respectively, when using spectra processed by external parameter orthogonalization (EPO), orthogonal signal correction (OSC), support vector regression (SVR), convolutional neural network (CNN), deep neural network (DNN), denoising convolutional neural network (DnCNN), and MIRNet. Therefore, the proposed MIRNet achieves competitive results compared with these state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3287583</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1109-268X</orcidid><orcidid>https://orcid.org/0000-0002-3402-9093</orcidid><orcidid>https://orcid.org/0000-0002-7567-9084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2023-01, Vol.16, p.1-16
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2859716815
source Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Brown soils
Carbon content
Context
Convolutional neural networks
Deep learning
Estimation
Feature extraction
Information processing
Infrared spectra
Infrared spectroscopy
Machine learning
Modules
Moisture
Moisture content
Moisture effects
Near infrared radiation
Neural networks
Organic carbon
Organic soils
Removal
Soil
Soil measurements
Soil moisture
soil moisture content (SMC) influence removal
soil moisture content influence removal
soil organic carbon
soil organic carbon (SOC)
Spectra
Support vector machines
VIS-NIR spectra
visible and near-infrared (Vis-NIR) spectra
Water content
title Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Moisture%20Effects%20on%20Soil%20Organic%20Carbon%20Content%20Estimation%20in%20Vis-NIR%20Spectra%20with%20a%20Deep%20Learning%20Algorithm&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Zhao,%20Wudi&rft.date=2023-01-01&rft.volume=16&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3287583&rft_dat=%3Cproquest_cross%3E2859716815%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-a75ed34657b65c639f00d142963ce200f3dc96fdbac2b32fbe0073f5c443f04c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859716815&rft_id=info:pmid/&rft_ieee_id=10157982&rfr_iscdi=true