Loading…
Sparkles: Unlocking Chats Across Multiple Images for Multimodal Instruction-Following Models
Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 and LLaVA face challenges i...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 and LLaVA face challenges in maintaining dialogue coherence in scenarios involving multiple images. A primary reason is the lack of a specialized dataset for this critical application. To bridge these gaps, we introduce SparklesDialogue, the first machine-generated dialogue dataset tailored for word-level interleaved multi-image and text interactions. Furthermore, we construct SparklesEval, a GPT-assisted benchmark for quantitatively assessing a model's conversational competence across multiple images and dialogue turns. We then present SparklesChat, a multimodal instruction-following model for open-ended dialogues across multiple images. Our experiments validate the effectiveness of training SparklesChat with SparklesDialogue based on MiniGPT-4 and LLaVA-v1.5, which enhances comprehension across multiple images and dialogue turns, and does not compromise single-image understanding capabilities. Qualitative evaluations further demonstrate SparklesChat's generality in handling real-world applications. All resources related to this study are publicly available at https://github.com/HYPJUDY/Sparkles. |
---|---|
ISSN: | 2331-8422 |