Loading…

Sparkles: Unlocking Chats Across Multiple Images for Multimodal Instruction-Following Models

Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 and LLaVA face challenges i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-09
Main Authors: Huang, Yupan, Meng, Zaiqiao, Liu, Fangyu, Su, Yixuan, Collier, Nigel, Lu, Yutong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 and LLaVA face challenges in maintaining dialogue coherence in scenarios involving multiple images. A primary reason is the lack of a specialized dataset for this critical application. To bridge these gaps, we introduce SparklesDialogue, the first machine-generated dialogue dataset tailored for word-level interleaved multi-image and text interactions. Furthermore, we construct SparklesEval, a GPT-assisted benchmark for quantitatively assessing a model's conversational competence across multiple images and dialogue turns. We then present SparklesChat, a multimodal instruction-following model for open-ended dialogues across multiple images. Our experiments validate the effectiveness of training SparklesChat with SparklesDialogue based on MiniGPT-4 and LLaVA-v1.5, which enhances comprehension across multiple images and dialogue turns, and does not compromise single-image understanding capabilities. Qualitative evaluations further demonstrate SparklesChat's generality in handling real-world applications. All resources related to this study are publicly available at https://github.com/HYPJUDY/Sparkles.
ISSN:2331-8422