Loading…
Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19
Reasonable planning of travel routes can keep people away from crowded areas and reduce the probability of contracting the COVID-19. In view of the characteristics related to virus infection and human flow density, it can overcome the shortcomings of using the same pheromone initial value and slow i...
Saved in:
Published in: | Wireless communications and mobile computing 2023-08, Vol.2023, p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2023 |
creator | Shao, Yi Deng, Xuefeng Feng, Lingqing |
description | Reasonable planning of travel routes can keep people away from crowded areas and reduce the probability of contracting the COVID-19. In view of the characteristics related to virus infection and human flow density, it can overcome the shortcomings of using the same pheromone initial value and slow initial convergence in route planning of ant colony optimization (ACO) algorithm. In this paper, the decision tree algorithm is used to divide the human flow density into three levels: high risk, medium risk, and low risk; and different pheromone volatility coefficients are set to change the distribution of pheromone concentration. The experimental results show that the improved ACO algorithm could help to reduce the likehood of passing through the medium-risk areas and the high-risk areas, which is reduced to less than 1%. This scheme provides an efficient route planning method for epidemic prevention and control that can be applied in the daily prevention of COVID-19 in universities. |
doi_str_mv | 10.1155/2023/8984451 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2860177260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860177260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3</originalsourceid><addsrcrecordid>eNp90E1PwkAQBuCN0UREb_6ATTxqZbYf-3FE8IOEBA6ox2Zpp3RJ2cXdEuXfWwLx6GnewzMzyUvILYNHxrJsEEOcDKSSaZqxM9JjWQKR5EKc_2WuLslVCGsASCBmPfI5121N54221tgVdRUd2paOXOPsng6blfOmrTf0SQcsqbN0jIUJpgsLj0iNpW2NHbct_rSH7dHsYzKOmLomF5VuAt6cZp-8vzwvRm_RdPY6GQ2nUcFkzKKlSKsCBEoNGvVSgwRQVcbSFHkGgi8TLLUqGBZSiQSZkJJLlEJLpXghy6RP7o53t9597TC0-drtvO1e5rHkwISIOXTq4agK70LwWOVbbzba73MG-aG6_FBdfqqu4_dHXhtb6m_zv_4Fo2Rq6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860177260</pqid></control><display><type>article</type><title>Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>Coronavirus Research Database</source><creator>Shao, Yi ; Deng, Xuefeng ; Feng, Lingqing</creator><contributor>Wan, Shaohua ; Shaohua Wan</contributor><creatorcontrib>Shao, Yi ; Deng, Xuefeng ; Feng, Lingqing ; Wan, Shaohua ; Shaohua Wan</creatorcontrib><description>Reasonable planning of travel routes can keep people away from crowded areas and reduce the probability of contracting the COVID-19. In view of the characteristics related to virus infection and human flow density, it can overcome the shortcomings of using the same pheromone initial value and slow initial convergence in route planning of ant colony optimization (ACO) algorithm. In this paper, the decision tree algorithm is used to divide the human flow density into three levels: high risk, medium risk, and low risk; and different pheromone volatility coefficients are set to change the distribution of pheromone concentration. The experimental results show that the improved ACO algorithm could help to reduce the likehood of passing through the medium-risk areas and the high-risk areas, which is reduced to less than 1%. This scheme provides an efficient route planning method for epidemic prevention and control that can be applied in the daily prevention of COVID-19 in universities.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2023/8984451</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Ant colony optimization ; Artificial intelligence ; COVID-19 ; COVID-19 diagnostic tests ; Decision trees ; Density ; Disease control ; Disease transmission ; Epidemics ; Heuristic ; Infections ; Internet of Things ; Machine learning ; Optimization algorithms ; Pheromones ; Planning ; Risk ; Robots ; Route planning ; Unmanned aerial vehicles ; Viral diseases</subject><ispartof>Wireless communications and mobile computing, 2023-08, Vol.2023, p.1-14</ispartof><rights>Copyright © 2023 Yi Shao et al.</rights><rights>Copyright © 2023 Yi Shao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3</citedby><cites>FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3</cites><orcidid>0000-0002-8522-7452 ; 0000-0002-5132-1264 ; 0000-0002-7311-1030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2860177260/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2860177260?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><contributor>Wan, Shaohua</contributor><contributor>Shaohua Wan</contributor><creatorcontrib>Shao, Yi</creatorcontrib><creatorcontrib>Deng, Xuefeng</creatorcontrib><creatorcontrib>Feng, Lingqing</creatorcontrib><title>Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19</title><title>Wireless communications and mobile computing</title><description>Reasonable planning of travel routes can keep people away from crowded areas and reduce the probability of contracting the COVID-19. In view of the characteristics related to virus infection and human flow density, it can overcome the shortcomings of using the same pheromone initial value and slow initial convergence in route planning of ant colony optimization (ACO) algorithm. In this paper, the decision tree algorithm is used to divide the human flow density into three levels: high risk, medium risk, and low risk; and different pheromone volatility coefficients are set to change the distribution of pheromone concentration. The experimental results show that the improved ACO algorithm could help to reduce the likehood of passing through the medium-risk areas and the high-risk areas, which is reduced to less than 1%. This scheme provides an efficient route planning method for epidemic prevention and control that can be applied in the daily prevention of COVID-19 in universities.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Artificial intelligence</subject><subject>COVID-19</subject><subject>COVID-19 diagnostic tests</subject><subject>Decision trees</subject><subject>Density</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>Heuristic</subject><subject>Infections</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Optimization algorithms</subject><subject>Pheromones</subject><subject>Planning</subject><subject>Risk</subject><subject>Robots</subject><subject>Route planning</subject><subject>Unmanned aerial vehicles</subject><subject>Viral diseases</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNp90E1PwkAQBuCN0UREb_6ATTxqZbYf-3FE8IOEBA6ox2Zpp3RJ2cXdEuXfWwLx6GnewzMzyUvILYNHxrJsEEOcDKSSaZqxM9JjWQKR5EKc_2WuLslVCGsASCBmPfI5121N54221tgVdRUd2paOXOPsng6blfOmrTf0SQcsqbN0jIUJpgsLj0iNpW2NHbct_rSH7dHsYzKOmLomF5VuAt6cZp-8vzwvRm_RdPY6GQ2nUcFkzKKlSKsCBEoNGvVSgwRQVcbSFHkGgi8TLLUqGBZSiQSZkJJLlEJLpXghy6RP7o53t9597TC0-drtvO1e5rHkwISIOXTq4agK70LwWOVbbzba73MG-aG6_FBdfqqu4_dHXhtb6m_zv_4Fo2Rq6g</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Shao, Yi</creator><creator>Deng, Xuefeng</creator><creator>Feng, Lingqing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8522-7452</orcidid><orcidid>https://orcid.org/0000-0002-5132-1264</orcidid><orcidid>https://orcid.org/0000-0002-7311-1030</orcidid></search><sort><creationdate>20230822</creationdate><title>Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19</title><author>Shao, Yi ; Deng, Xuefeng ; Feng, Lingqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Artificial intelligence</topic><topic>COVID-19</topic><topic>COVID-19 diagnostic tests</topic><topic>Decision trees</topic><topic>Density</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>Heuristic</topic><topic>Infections</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Optimization algorithms</topic><topic>Pheromones</topic><topic>Planning</topic><topic>Risk</topic><topic>Robots</topic><topic>Route planning</topic><topic>Unmanned aerial vehicles</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yi</creatorcontrib><creatorcontrib>Deng, Xuefeng</creatorcontrib><creatorcontrib>Feng, Lingqing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yi</au><au>Deng, Xuefeng</au><au>Feng, Lingqing</au><au>Wan, Shaohua</au><au>Shaohua Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Reasonable planning of travel routes can keep people away from crowded areas and reduce the probability of contracting the COVID-19. In view of the characteristics related to virus infection and human flow density, it can overcome the shortcomings of using the same pheromone initial value and slow initial convergence in route planning of ant colony optimization (ACO) algorithm. In this paper, the decision tree algorithm is used to divide the human flow density into three levels: high risk, medium risk, and low risk; and different pheromone volatility coefficients are set to change the distribution of pheromone concentration. The experimental results show that the improved ACO algorithm could help to reduce the likehood of passing through the medium-risk areas and the high-risk areas, which is reduced to less than 1%. This scheme provides an efficient route planning method for epidemic prevention and control that can be applied in the daily prevention of COVID-19 in universities.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2023/8984451</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8522-7452</orcidid><orcidid>https://orcid.org/0000-0002-5132-1264</orcidid><orcidid>https://orcid.org/0000-0002-7311-1030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2023-08, Vol.2023, p.1-14 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2860177260 |
source | Publicly Available Content Database; Wiley Open Access; Coronavirus Research Database |
subjects | Algorithms Ant colony optimization Artificial intelligence COVID-19 COVID-19 diagnostic tests Decision trees Density Disease control Disease transmission Epidemics Heuristic Infections Internet of Things Machine learning Optimization algorithms Pheromones Planning Risk Robots Route planning Unmanned aerial vehicles Viral diseases |
title | Path Planning of Ant Colony Algorithm Based on Decision Tree in the Context of COVID-19 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20Planning%20of%20Ant%20Colony%20Algorithm%20Based%20on%20Decision%20Tree%20in%20the%20Context%20of%20COVID-19&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Shao,%20Yi&rft.date=2023-08-22&rft.volume=2023&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2023/8984451&rft_dat=%3Cproquest_cross%3E2860177260%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1821-b74fc07e8a0aeaba08009f5144e65076b3eda9c1ec8973e178868e87a8996c8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860177260&rft_id=info:pmid/&rfr_iscdi=true |