Loading…

Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals

Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The average depth of these fluctuations is approximately 79 meV. The shape of the corresponding wide photolumi...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. PSS-RRL. Rapid research letters 2023-09, Vol.17 (9), p.n/a
Main Authors: Krustok, Jüri, Kaupmees, Reelika, Abbasi, Nafiseh, Muska, Katri, Mengü, Idil, Timmo, Kristi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 9
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 17
creator Krustok, Jüri
Kaupmees, Reelika
Abbasi, Nafiseh
Muska, Katri
Mengü, Idil
Timmo, Kristi
description Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The average depth of these fluctuations is approximately 79 meV. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The temperature dependence of this PL band is demonstrated to be influenced by the redistribution of holes between potential wells in the valence band with varying depths. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced. This temperature is found to be approximately 300 K higher than the lattice temperature in the samples, and it is mainly caused by the very short minority carrier lifetime. According to the laser power‐dependent PL studies, there is a consistent reduction in the effective carrier temperature as the laser power increases. This phenomenon is explained by the dominance of nonradiative Shockley–Read–Hall recombination at lower temperatures. Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced.
doi_str_mv 10.1002/pssr.202300077
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2860473930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860473930</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-111f168b8da9365fc6290d7f1cbd7e1d6919bd42aef784c652280c26eb16d8243</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKevPgd8UVjnTdIm7eMszgkTZdUXX0KaptKxNTVpGXvzJ_gb_SV2TvZyzz3w3XvgIHRJYEwA6G3jvRtToAwAhDhCAxJzGnAq4PiwR-EpOvN-CRAlImQDtLxTdfGhGjxddbrtVFvZ2o_wzLY4Vc5VxvWuR_CO-_n6bm0_JlqbprUOL4y267yq_85wVeO0o-91Vl9no8zchPip0s5qt_WtWvlzdFL2Yi7-dYjepvev6SyYPz88ppN50FDGREAIKQmP87hQCeNRqTlNoBAl0XkhDCl4QpK8CKkypYhDzSNKY9CUm5zwIqYhG6Kr_d_G2c_O-FYubefqPlLSmEMoWMKgp5I9talWZisbV62V20oCclem3JUpD2XKlyxbHBz7BQtybGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860473930</pqid></control><display><type>article</type><title>Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Krustok, Jüri ; Kaupmees, Reelika ; Abbasi, Nafiseh ; Muska, Katri ; Mengü, Idil ; Timmo, Kristi</creator><creatorcontrib>Krustok, Jüri ; Kaupmees, Reelika ; Abbasi, Nafiseh ; Muska, Katri ; Mengü, Idil ; Timmo, Kristi</creatorcontrib><description>Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The average depth of these fluctuations is approximately 79 meV. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The temperature dependence of this PL band is demonstrated to be influenced by the redistribution of holes between potential wells in the valence band with varying depths. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced. This temperature is found to be approximately 300 K higher than the lattice temperature in the samples, and it is mainly caused by the very short minority carrier lifetime. According to the laser power‐dependent PL studies, there is a consistent reduction in the effective carrier temperature as the laser power increases. This phenomenon is explained by the dominance of nonradiative Shockley–Read–Hall recombination at lower temperatures. Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202300077</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bandgap fluctuations ; Carrier lifetime ; defects ; effective carrier temperature ; Energy gap ; kesterites ; Lasers ; Microcrystals ; Minority carriers ; Photoluminescence ; Temperature ; Temperature dependence ; Valence band</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2023-09, Vol.17 (9), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8037-5675 ; 0000-0003-0011-1838 ; 0000-0002-1766-4837 ; 0000-0002-4671-2332 ; 0000-0001-6054-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Krustok, Jüri</creatorcontrib><creatorcontrib>Kaupmees, Reelika</creatorcontrib><creatorcontrib>Abbasi, Nafiseh</creatorcontrib><creatorcontrib>Muska, Katri</creatorcontrib><creatorcontrib>Mengü, Idil</creatorcontrib><creatorcontrib>Timmo, Kristi</creatorcontrib><title>Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The average depth of these fluctuations is approximately 79 meV. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The temperature dependence of this PL band is demonstrated to be influenced by the redistribution of holes between potential wells in the valence band with varying depths. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced. This temperature is found to be approximately 300 K higher than the lattice temperature in the samples, and it is mainly caused by the very short minority carrier lifetime. According to the laser power‐dependent PL studies, there is a consistent reduction in the effective carrier temperature as the laser power increases. This phenomenon is explained by the dominance of nonradiative Shockley–Read–Hall recombination at lower temperatures. Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced.</description><subject>bandgap fluctuations</subject><subject>Carrier lifetime</subject><subject>defects</subject><subject>effective carrier temperature</subject><subject>Energy gap</subject><subject>kesterites</subject><subject>Lasers</subject><subject>Microcrystals</subject><subject>Minority carriers</subject><subject>Photoluminescence</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Valence band</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKevPgd8UVjnTdIm7eMszgkTZdUXX0KaptKxNTVpGXvzJ_gb_SV2TvZyzz3w3XvgIHRJYEwA6G3jvRtToAwAhDhCAxJzGnAq4PiwR-EpOvN-CRAlImQDtLxTdfGhGjxddbrtVFvZ2o_wzLY4Vc5VxvWuR_CO-_n6bm0_JlqbprUOL4y267yq_85wVeO0o-91Vl9no8zchPip0s5qt_WtWvlzdFL2Yi7-dYjepvev6SyYPz88ppN50FDGREAIKQmP87hQCeNRqTlNoBAl0XkhDCl4QpK8CKkypYhDzSNKY9CUm5zwIqYhG6Kr_d_G2c_O-FYubefqPlLSmEMoWMKgp5I9talWZisbV62V20oCclem3JUpD2XKlyxbHBz7BQtybGw</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Krustok, Jüri</creator><creator>Kaupmees, Reelika</creator><creator>Abbasi, Nafiseh</creator><creator>Muska, Katri</creator><creator>Mengü, Idil</creator><creator>Timmo, Kristi</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8037-5675</orcidid><orcidid>https://orcid.org/0000-0003-0011-1838</orcidid><orcidid>https://orcid.org/0000-0002-1766-4837</orcidid><orcidid>https://orcid.org/0000-0002-4671-2332</orcidid><orcidid>https://orcid.org/0000-0001-6054-6783</orcidid></search><sort><creationdate>202309</creationdate><title>Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals</title><author>Krustok, Jüri ; Kaupmees, Reelika ; Abbasi, Nafiseh ; Muska, Katri ; Mengü, Idil ; Timmo, Kristi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-111f168b8da9365fc6290d7f1cbd7e1d6919bd42aef784c652280c26eb16d8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bandgap fluctuations</topic><topic>Carrier lifetime</topic><topic>defects</topic><topic>effective carrier temperature</topic><topic>Energy gap</topic><topic>kesterites</topic><topic>Lasers</topic><topic>Microcrystals</topic><topic>Minority carriers</topic><topic>Photoluminescence</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krustok, Jüri</creatorcontrib><creatorcontrib>Kaupmees, Reelika</creatorcontrib><creatorcontrib>Abbasi, Nafiseh</creatorcontrib><creatorcontrib>Muska, Katri</creatorcontrib><creatorcontrib>Mengü, Idil</creatorcontrib><creatorcontrib>Timmo, Kristi</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krustok, Jüri</au><au>Kaupmees, Reelika</au><au>Abbasi, Nafiseh</au><au>Muska, Katri</au><au>Mengü, Idil</au><au>Timmo, Kristi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2023-09</date><risdate>2023</risdate><volume>17</volume><issue>9</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The average depth of these fluctuations is approximately 79 meV. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The temperature dependence of this PL band is demonstrated to be influenced by the redistribution of holes between potential wells in the valence band with varying depths. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced. This temperature is found to be approximately 300 K higher than the lattice temperature in the samples, and it is mainly caused by the very short minority carrier lifetime. According to the laser power‐dependent PL studies, there is a consistent reduction in the effective carrier temperature as the laser power increases. This phenomenon is explained by the dominance of nonradiative Shockley–Read–Hall recombination at lower temperatures. Temperature and laser power dependencies of the band‐to‐acceptor recombination in Cu2ZnSn(S x Se1−x )4 (x = 0.7) microcrystals, which exhibit large bandgap energy fluctuations, are studied. The shape of the corresponding wide photoluminescence (PL) band is analyzed using a modified localized‐state ensemble model. The shape of this band at different temperatures is well fitted when an effective carrier temperature is introduced.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202300077</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8037-5675</orcidid><orcidid>https://orcid.org/0000-0003-0011-1838</orcidid><orcidid>https://orcid.org/0000-0002-1766-4837</orcidid><orcidid>https://orcid.org/0000-0002-4671-2332</orcidid><orcidid>https://orcid.org/0000-0001-6054-6783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2023-09, Vol.17 (9), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2860473930
source Wiley-Blackwell Read & Publish Collection
subjects bandgap fluctuations
Carrier lifetime
defects
effective carrier temperature
Energy gap
kesterites
Lasers
Microcrystals
Minority carriers
Photoluminescence
Temperature
Temperature dependence
Valence band
title Bandgap Fluctuations, Hot Carriers, and Band‐to‐Acceptor Recombination in Cu2ZnSn(S,Se)4 Microcrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20Fluctuations,%20Hot%20Carriers,%20and%20Band%E2%80%90to%E2%80%90Acceptor%20Recombination%20in%20Cu2ZnSn(S,Se)4%20Microcrystals&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Krustok,%20J%C3%BCri&rft.date=2023-09&rft.volume=17&rft.issue=9&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202300077&rft_dat=%3Cproquest_wiley%3E2860473930%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-111f168b8da9365fc6290d7f1cbd7e1d6919bd42aef784c652280c26eb16d8243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860473930&rft_id=info:pmid/&rfr_iscdi=true