Loading…
Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments
The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for impro...
Saved in:
Published in: | Polymer composites 2023-09, Vol.44 (9), p.5514-5526 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5526 |
container_issue | 9 |
container_start_page | 5514 |
container_title | Polymer composites |
container_volume | 44 |
creator | Gupta K, B. N. V. S. Ganesh Patnaik, Satyaroop Dasari, Srinivasu Ray, Bankim Chandra Prusty, Rajesh Kumar |
description | The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes.
The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs. |
doi_str_mv | 10.1002/pc.27505 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2860491456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860491456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3</originalsourceid><addsrcrecordid>eNot0MFOwzAMBuAIgcQYSDxCJM4dTtK063GaBkya2A5wjtw00TK1aUm7od24ceUZeRK6lZMl-7Mt_YTcM5gwAP7Y6AlPJcgLMmIynkYgk-ySjICnPJqKLL0mN2276yVLEjEi3wu_Ra9NQZ3vTCixch4DrYzu205jSXOzxYOrA60txeIwYOtyc1JdD4adzrT04JB69DWdlXwtfr9-lptXautQYedqT9EXtN0Hi9rQJph-3gWDXWV8196SK4tla-7-65i8Py3e5i_Rav28nM9WUcM5k5FIWZEUOhWYSxnnBguDhgGzwCDTsUXJOWCeYQ4WdCZAZEKKaQE2yTMJVozJw3C3CfXH3rSd2tX74PuXik8TiDMWy6RX0aA-XWmOqgmuwnBUDNQpY9Vodc5YbebnKv4ABM9zzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860491456</pqid></control><display><type>article</type><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</creator><creatorcontrib>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</creatorcontrib><description>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes.
The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.27505</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aluminum ; Aluminum oxide ; Delamination ; Energy measurement ; Fiber-metal laminates ; Flexural strength ; Fracture toughness ; Glass fiber reinforced plastics ; interface/interphase ; Interfacial shear strength ; Interpenetrating networks ; Mechanical properties ; mechanical testing ; Metal surfaces ; Microscopy ; nanoparticles ; Polymers ; Shear strength ; Strain energy release rate ; Surface energy ; Surface roughness ; surface treatments ; Tensile strength</subject><ispartof>Polymer composites, 2023-09, Vol.44 (9), p.5514-5526</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2023 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1153-7869 ; 0000-0003-1599-5867 ; 0000-0001-9255-0680 ; 0000-0002-1245-8276 ; 0000-0003-3419-5734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gupta K, B. N. V. S. Ganesh</creatorcontrib><creatorcontrib>Patnaik, Satyaroop</creatorcontrib><creatorcontrib>Dasari, Srinivasu</creatorcontrib><creatorcontrib>Ray, Bankim Chandra</creatorcontrib><creatorcontrib>Prusty, Rajesh Kumar</creatorcontrib><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><title>Polymer composites</title><description>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes.
The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Delamination</subject><subject>Energy measurement</subject><subject>Fiber-metal laminates</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Glass fiber reinforced plastics</subject><subject>interface/interphase</subject><subject>Interfacial shear strength</subject><subject>Interpenetrating networks</subject><subject>Mechanical properties</subject><subject>mechanical testing</subject><subject>Metal surfaces</subject><subject>Microscopy</subject><subject>nanoparticles</subject><subject>Polymers</subject><subject>Shear strength</subject><subject>Strain energy release rate</subject><subject>Surface energy</subject><subject>Surface roughness</subject><subject>surface treatments</subject><subject>Tensile strength</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNot0MFOwzAMBuAIgcQYSDxCJM4dTtK063GaBkya2A5wjtw00TK1aUm7od24ceUZeRK6lZMl-7Mt_YTcM5gwAP7Y6AlPJcgLMmIynkYgk-ySjICnPJqKLL0mN2276yVLEjEi3wu_Ra9NQZ3vTCixch4DrYzu205jSXOzxYOrA60txeIwYOtyc1JdD4adzrT04JB69DWdlXwtfr9-lptXautQYedqT9EXtN0Hi9rQJph-3gWDXWV8196SK4tla-7-65i8Py3e5i_Rav28nM9WUcM5k5FIWZEUOhWYSxnnBguDhgGzwCDTsUXJOWCeYQ4WdCZAZEKKaQE2yTMJVozJw3C3CfXH3rSd2tX74PuXik8TiDMWy6RX0aA-XWmOqgmuwnBUDNQpY9Vodc5YbebnKv4ABM9zzg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Gupta K, B. N. V. S. Ganesh</creator><creator>Patnaik, Satyaroop</creator><creator>Dasari, Srinivasu</creator><creator>Ray, Bankim Chandra</creator><creator>Prusty, Rajesh Kumar</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1153-7869</orcidid><orcidid>https://orcid.org/0000-0003-1599-5867</orcidid><orcidid>https://orcid.org/0000-0001-9255-0680</orcidid><orcidid>https://orcid.org/0000-0002-1245-8276</orcidid><orcidid>https://orcid.org/0000-0003-3419-5734</orcidid></search><sort><creationdate>202309</creationdate><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><author>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Delamination</topic><topic>Energy measurement</topic><topic>Fiber-metal laminates</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Glass fiber reinforced plastics</topic><topic>interface/interphase</topic><topic>Interfacial shear strength</topic><topic>Interpenetrating networks</topic><topic>Mechanical properties</topic><topic>mechanical testing</topic><topic>Metal surfaces</topic><topic>Microscopy</topic><topic>nanoparticles</topic><topic>Polymers</topic><topic>Shear strength</topic><topic>Strain energy release rate</topic><topic>Surface energy</topic><topic>Surface roughness</topic><topic>surface treatments</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta K, B. N. V. S. Ganesh</creatorcontrib><creatorcontrib>Patnaik, Satyaroop</creatorcontrib><creatorcontrib>Dasari, Srinivasu</creatorcontrib><creatorcontrib>Ray, Bankim Chandra</creatorcontrib><creatorcontrib>Prusty, Rajesh Kumar</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta K, B. N. V. S. Ganesh</au><au>Patnaik, Satyaroop</au><au>Dasari, Srinivasu</au><au>Ray, Bankim Chandra</au><au>Prusty, Rajesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</atitle><jtitle>Polymer composites</jtitle><date>2023-09</date><risdate>2023</risdate><volume>44</volume><issue>9</issue><spage>5514</spage><epage>5526</epage><pages>5514-5526</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes.
The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.27505</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1153-7869</orcidid><orcidid>https://orcid.org/0000-0003-1599-5867</orcidid><orcidid>https://orcid.org/0000-0001-9255-0680</orcidid><orcidid>https://orcid.org/0000-0002-1245-8276</orcidid><orcidid>https://orcid.org/0000-0003-3419-5734</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2023-09, Vol.44 (9), p.5514-5526 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_2860491456 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Aluminum oxide Delamination Energy measurement Fiber-metal laminates Flexural strength Fracture toughness Glass fiber reinforced plastics interface/interphase Interfacial shear strength Interpenetrating networks Mechanical properties mechanical testing Metal surfaces Microscopy nanoparticles Polymers Shear strength Strain energy release rate Surface energy Surface roughness surface treatments Tensile strength |
title | Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20interlaminar%20mechanical%20behavior%20of%20advanced%20fiber%20metal%20laminates%20via%20nano%20Al2O3%E2%80%90IPN%20formation%20and%20surface%20pre%E2%80%90treatments&rft.jtitle=Polymer%20composites&rft.au=Gupta%20K,%20B.%20N.%20V.%20S.%20Ganesh&rft.date=2023-09&rft.volume=44&rft.issue=9&rft.spage=5514&rft.epage=5526&rft.pages=5514-5526&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.27505&rft_dat=%3Cproquest_wiley%3E2860491456%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860491456&rft_id=info:pmid/&rfr_iscdi=true |