Loading…

Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments

The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for impro...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2023-09, Vol.44 (9), p.5514-5526
Main Authors: Gupta K, B. N. V. S. Ganesh, Patnaik, Satyaroop, Dasari, Srinivasu, Ray, Bankim Chandra, Prusty, Rajesh Kumar
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5526
container_issue 9
container_start_page 5514
container_title Polymer composites
container_volume 44
creator Gupta K, B. N. V. S. Ganesh
Patnaik, Satyaroop
Dasari, Srinivasu
Ray, Bankim Chandra
Prusty, Rajesh Kumar
description The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes. The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.
doi_str_mv 10.1002/pc.27505
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2860491456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860491456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3</originalsourceid><addsrcrecordid>eNot0MFOwzAMBuAIgcQYSDxCJM4dTtK063GaBkya2A5wjtw00TK1aUm7od24ceUZeRK6lZMl-7Mt_YTcM5gwAP7Y6AlPJcgLMmIynkYgk-ySjICnPJqKLL0mN2276yVLEjEi3wu_Ra9NQZ3vTCixch4DrYzu205jSXOzxYOrA60txeIwYOtyc1JdD4adzrT04JB69DWdlXwtfr9-lptXautQYedqT9EXtN0Hi9rQJph-3gWDXWV8196SK4tla-7-65i8Py3e5i_Rav28nM9WUcM5k5FIWZEUOhWYSxnnBguDhgGzwCDTsUXJOWCeYQ4WdCZAZEKKaQE2yTMJVozJw3C3CfXH3rSd2tX74PuXik8TiDMWy6RX0aA-XWmOqgmuwnBUDNQpY9Vodc5YbebnKv4ABM9zzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860491456</pqid></control><display><type>article</type><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</creator><creatorcontrib>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</creatorcontrib><description>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes. The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.27505</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aluminum ; Aluminum oxide ; Delamination ; Energy measurement ; Fiber-metal laminates ; Flexural strength ; Fracture toughness ; Glass fiber reinforced plastics ; interface/interphase ; Interfacial shear strength ; Interpenetrating networks ; Mechanical properties ; mechanical testing ; Metal surfaces ; Microscopy ; nanoparticles ; Polymers ; Shear strength ; Strain energy release rate ; Surface energy ; Surface roughness ; surface treatments ; Tensile strength</subject><ispartof>Polymer composites, 2023-09, Vol.44 (9), p.5514-5526</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2023 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1153-7869 ; 0000-0003-1599-5867 ; 0000-0001-9255-0680 ; 0000-0002-1245-8276 ; 0000-0003-3419-5734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gupta K, B. N. V. S. Ganesh</creatorcontrib><creatorcontrib>Patnaik, Satyaroop</creatorcontrib><creatorcontrib>Dasari, Srinivasu</creatorcontrib><creatorcontrib>Ray, Bankim Chandra</creatorcontrib><creatorcontrib>Prusty, Rajesh Kumar</creatorcontrib><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><title>Polymer composites</title><description>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes. The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Delamination</subject><subject>Energy measurement</subject><subject>Fiber-metal laminates</subject><subject>Flexural strength</subject><subject>Fracture toughness</subject><subject>Glass fiber reinforced plastics</subject><subject>interface/interphase</subject><subject>Interfacial shear strength</subject><subject>Interpenetrating networks</subject><subject>Mechanical properties</subject><subject>mechanical testing</subject><subject>Metal surfaces</subject><subject>Microscopy</subject><subject>nanoparticles</subject><subject>Polymers</subject><subject>Shear strength</subject><subject>Strain energy release rate</subject><subject>Surface energy</subject><subject>Surface roughness</subject><subject>surface treatments</subject><subject>Tensile strength</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNot0MFOwzAMBuAIgcQYSDxCJM4dTtK063GaBkya2A5wjtw00TK1aUm7od24ceUZeRK6lZMl-7Mt_YTcM5gwAP7Y6AlPJcgLMmIynkYgk-ySjICnPJqKLL0mN2276yVLEjEi3wu_Ra9NQZ3vTCixch4DrYzu205jSXOzxYOrA60txeIwYOtyc1JdD4adzrT04JB69DWdlXwtfr9-lptXautQYedqT9EXtN0Hi9rQJph-3gWDXWV8196SK4tla-7-65i8Py3e5i_Rav28nM9WUcM5k5FIWZEUOhWYSxnnBguDhgGzwCDTsUXJOWCeYQ4WdCZAZEKKaQE2yTMJVozJw3C3CfXH3rSd2tX74PuXik8TiDMWy6RX0aA-XWmOqgmuwnBUDNQpY9Vodc5YbebnKv4ABM9zzg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Gupta K, B. N. V. S. Ganesh</creator><creator>Patnaik, Satyaroop</creator><creator>Dasari, Srinivasu</creator><creator>Ray, Bankim Chandra</creator><creator>Prusty, Rajesh Kumar</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1153-7869</orcidid><orcidid>https://orcid.org/0000-0003-1599-5867</orcidid><orcidid>https://orcid.org/0000-0001-9255-0680</orcidid><orcidid>https://orcid.org/0000-0002-1245-8276</orcidid><orcidid>https://orcid.org/0000-0003-3419-5734</orcidid></search><sort><creationdate>202309</creationdate><title>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</title><author>Gupta K, B. N. V. S. Ganesh ; Patnaik, Satyaroop ; Dasari, Srinivasu ; Ray, Bankim Chandra ; Prusty, Rajesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Delamination</topic><topic>Energy measurement</topic><topic>Fiber-metal laminates</topic><topic>Flexural strength</topic><topic>Fracture toughness</topic><topic>Glass fiber reinforced plastics</topic><topic>interface/interphase</topic><topic>Interfacial shear strength</topic><topic>Interpenetrating networks</topic><topic>Mechanical properties</topic><topic>mechanical testing</topic><topic>Metal surfaces</topic><topic>Microscopy</topic><topic>nanoparticles</topic><topic>Polymers</topic><topic>Shear strength</topic><topic>Strain energy release rate</topic><topic>Surface energy</topic><topic>Surface roughness</topic><topic>surface treatments</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta K, B. N. V. S. Ganesh</creatorcontrib><creatorcontrib>Patnaik, Satyaroop</creatorcontrib><creatorcontrib>Dasari, Srinivasu</creatorcontrib><creatorcontrib>Ray, Bankim Chandra</creatorcontrib><creatorcontrib>Prusty, Rajesh Kumar</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta K, B. N. V. S. Ganesh</au><au>Patnaik, Satyaroop</au><au>Dasari, Srinivasu</au><au>Ray, Bankim Chandra</au><au>Prusty, Rajesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments</atitle><jtitle>Polymer composites</jtitle><date>2023-09</date><risdate>2023</risdate><volume>44</volume><issue>9</issue><spage>5514</spage><epage>5526</epage><pages>5514-5526</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The inferior delamination resistance and out‐of‐plane performance of fiber metal laminates (FMLs) are of serious concerns. This work employs two modification methods, namely metal surface's chemical pre‐treatment and nano Al2O3 embedded interpenetrating polymer network (IPN) formation for improving the delamination resistance of aluminum and glass fiber‐reinforced polymer (GFRP) composite‐based FMLs. The synergetic effect of the two modification techniques resulted in high degrees of improvement in delamination resistance that were ~28% for critical strain energy release rate during mode‐I interlaminar fracture toughness (ILFT), that is (GIC) and ~37% for GIIC. Simultaneously, the flexural strength, tensile strength, and interlaminar shear strength improved by ~23%, ~17%, and ~24%, respectively. Scanning electron microscopy, atomic force microscopy, and surface energy measurement studies showed that the chemical pre‐treatment significantly influenced the surface morphology, surface roughness, and surface energy responses of aluminum, respectively. Fractographic study validated the effect of modification methods on the failure behavior under various testing modes. The addition of nano Al2O3 to the IPN network and chemical etching of aluminium surfaces increased the interfacial adhesion between the constituents leading to the superior interlaminar mechanical performance of FMLs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.27505</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1153-7869</orcidid><orcidid>https://orcid.org/0000-0003-1599-5867</orcidid><orcidid>https://orcid.org/0000-0001-9255-0680</orcidid><orcidid>https://orcid.org/0000-0002-1245-8276</orcidid><orcidid>https://orcid.org/0000-0003-3419-5734</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2023-09, Vol.44 (9), p.5514-5526
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2860491456
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum
Aluminum oxide
Delamination
Energy measurement
Fiber-metal laminates
Flexural strength
Fracture toughness
Glass fiber reinforced plastics
interface/interphase
Interfacial shear strength
Interpenetrating networks
Mechanical properties
mechanical testing
Metal surfaces
Microscopy
nanoparticles
Polymers
Shear strength
Strain energy release rate
Surface energy
Surface roughness
surface treatments
Tensile strength
title Enhanced interlaminar mechanical behavior of advanced fiber metal laminates via nano Al2O3‐IPN formation and surface pre‐treatments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20interlaminar%20mechanical%20behavior%20of%20advanced%20fiber%20metal%20laminates%20via%20nano%20Al2O3%E2%80%90IPN%20formation%20and%20surface%20pre%E2%80%90treatments&rft.jtitle=Polymer%20composites&rft.au=Gupta%20K,%20B.%20N.%20V.%20S.%20Ganesh&rft.date=2023-09&rft.volume=44&rft.issue=9&rft.spage=5514&rft.epage=5526&rft.pages=5514-5526&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.27505&rft_dat=%3Cproquest_wiley%3E2860491456%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2215-371d6dc73ab554beadeae101f0109c4fa5220ab9ab0f0c930393538d0f6b950f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860491456&rft_id=info:pmid/&rfr_iscdi=true