Loading…

Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network

In this paper, a kind of multi‐stage cobweb resistance network consisting of n single‐stage cobwebs, namely, a 3 × 6 ×  n cobweb cascade resistance network (CCRN), was studied. To calculate the equivalent resistance of such a large‐scale complex network, we used a modified recursion‐transform (MRT)...

Full description

Saved in:
Bibliographic Details
Published in:International journal of circuit theory and applications 2023-09, Vol.51 (9), p.4071-4084
Main Authors: Luo, Feng‐Hua, Fang, Yi, Luo, Li‐Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c131t-91df2f4d0322915c227cb5cc7f18144c54b2285f683a87224f6ec0165130cb3a3
container_end_page 4084
container_issue 9
container_start_page 4071
container_title International journal of circuit theory and applications
container_volume 51
creator Luo, Feng‐Hua
Fang, Yi
Luo, Li‐Jin
description In this paper, a kind of multi‐stage cobweb resistance network consisting of n single‐stage cobwebs, namely, a 3 × 6 ×  n cobweb cascade resistance network (CCRN), was studied. To calculate the equivalent resistance of such a large‐scale complex network, we used a modified recursion‐transform (MRT) method. Firstly, the resistance network to be solved was simplified to a simple equivalent network. Thereafter, the recursive relation of the equivalent network was established according to the basic law of circuit. Then, the nonlinear recursive relation was transformed into the linear recursive relation by variable transformation technique. Finally, the equivalent resistance was gained by resolving the linear recursive relation. By this method, we obtained the exact analytical expression of the equivalent resistance of the 3 × 6 ×  n CCRN. The computation results show that the 3 × 6 ×  n CCRN's equivalent resistance is decided by the number of circuit stages n , and as n goes to infinity, these equivalent resistances all tend to a definite limit value.
doi_str_mv 10.1002/cta.3632
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861286846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861286846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c131t-91df2f4d0322915c227cb5cc7f18144c54b2285f683a87224f6ec0165130cb3a3</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhS0EEqUgcQRLbNikjO3EcZaoKj9SJTZFYmc5E1ukpHGxXVXs2HICDsRNOAkphcWb9xZvZqSPkHMGEwbArzCZiZCCH5ARg6rMAMqnQzICqFRWKSWPyUmMSwBQXFQjsph1FlNo0XR0bYPzYWV6tNQ7mp4tFd_vH1-fw5D_gfYUfb21NUUT0TSWBhvbmH63epu2PryckiNnumjP_nxMHm9mi-ldNn-4vZ9ezzNkgqWsYo3jLm9AcF6xAjkvsS4QS8cUy3Ms8ppzVTiphFEl57mTFoHJggnAWhgxJhf7u-vgXzc2Jr30m9APLzVXkg1SuRxal_sWBh9jsE6vQ7sy4U0z0DtmemCmd8zEDwo0YjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861286846</pqid></control><display><type>article</type><title>Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Luo, Feng‐Hua ; Fang, Yi ; Luo, Li‐Jin</creator><creatorcontrib>Luo, Feng‐Hua ; Fang, Yi ; Luo, Li‐Jin</creatorcontrib><description>In this paper, a kind of multi‐stage cobweb resistance network consisting of n single‐stage cobwebs, namely, a 3 × 6 ×  n cobweb cascade resistance network (CCRN), was studied. To calculate the equivalent resistance of such a large‐scale complex network, we used a modified recursion‐transform (MRT) method. Firstly, the resistance network to be solved was simplified to a simple equivalent network. Thereafter, the recursive relation of the equivalent network was established according to the basic law of circuit. Then, the nonlinear recursive relation was transformed into the linear recursive relation by variable transformation technique. Finally, the equivalent resistance was gained by resolving the linear recursive relation. By this method, we obtained the exact analytical expression of the equivalent resistance of the 3 × 6 ×  n CCRN. The computation results show that the 3 × 6 ×  n CCRN's equivalent resistance is decided by the number of circuit stages n , and as n goes to infinity, these equivalent resistances all tend to a definite limit value.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.3632</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Equivalence</subject><ispartof>International journal of circuit theory and applications, 2023-09, Vol.51 (9), p.4071-4084</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c131t-91df2f4d0322915c227cb5cc7f18144c54b2285f683a87224f6ec0165130cb3a3</cites><orcidid>0000-0001-9861-0541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Luo, Feng‐Hua</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Luo, Li‐Jin</creatorcontrib><title>Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network</title><title>International journal of circuit theory and applications</title><description>In this paper, a kind of multi‐stage cobweb resistance network consisting of n single‐stage cobwebs, namely, a 3 × 6 ×  n cobweb cascade resistance network (CCRN), was studied. To calculate the equivalent resistance of such a large‐scale complex network, we used a modified recursion‐transform (MRT) method. Firstly, the resistance network to be solved was simplified to a simple equivalent network. Thereafter, the recursive relation of the equivalent network was established according to the basic law of circuit. Then, the nonlinear recursive relation was transformed into the linear recursive relation by variable transformation technique. Finally, the equivalent resistance was gained by resolving the linear recursive relation. By this method, we obtained the exact analytical expression of the equivalent resistance of the 3 × 6 ×  n CCRN. The computation results show that the 3 × 6 ×  n CCRN's equivalent resistance is decided by the number of circuit stages n , and as n goes to infinity, these equivalent resistances all tend to a definite limit value.</description><subject>Equivalence</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kE1OwzAQhS0EEqUgcQRLbNikjO3EcZaoKj9SJTZFYmc5E1ukpHGxXVXs2HICDsRNOAkphcWb9xZvZqSPkHMGEwbArzCZiZCCH5ARg6rMAMqnQzICqFRWKSWPyUmMSwBQXFQjsph1FlNo0XR0bYPzYWV6tNQ7mp4tFd_vH1-fw5D_gfYUfb21NUUT0TSWBhvbmH63epu2PryckiNnumjP_nxMHm9mi-ldNn-4vZ9ezzNkgqWsYo3jLm9AcF6xAjkvsS4QS8cUy3Ms8ppzVTiphFEl57mTFoHJggnAWhgxJhf7u-vgXzc2Jr30m9APLzVXkg1SuRxal_sWBh9jsE6vQ7sy4U0z0DtmemCmd8zEDwo0YjI</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Luo, Feng‐Hua</creator><creator>Fang, Yi</creator><creator>Luo, Li‐Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9861-0541</orcidid></search><sort><creationdate>202309</creationdate><title>Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network</title><author>Luo, Feng‐Hua ; Fang, Yi ; Luo, Li‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c131t-91df2f4d0322915c227cb5cc7f18144c54b2285f683a87224f6ec0165130cb3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Equivalence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Feng‐Hua</creatorcontrib><creatorcontrib>Fang, Yi</creatorcontrib><creatorcontrib>Luo, Li‐Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Feng‐Hua</au><au>Fang, Yi</au><au>Luo, Li‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2023-09</date><risdate>2023</risdate><volume>51</volume><issue>9</issue><spage>4071</spage><epage>4084</epage><pages>4071-4084</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>In this paper, a kind of multi‐stage cobweb resistance network consisting of n single‐stage cobwebs, namely, a 3 × 6 ×  n cobweb cascade resistance network (CCRN), was studied. To calculate the equivalent resistance of such a large‐scale complex network, we used a modified recursion‐transform (MRT) method. Firstly, the resistance network to be solved was simplified to a simple equivalent network. Thereafter, the recursive relation of the equivalent network was established according to the basic law of circuit. Then, the nonlinear recursive relation was transformed into the linear recursive relation by variable transformation technique. Finally, the equivalent resistance was gained by resolving the linear recursive relation. By this method, we obtained the exact analytical expression of the equivalent resistance of the 3 × 6 ×  n CCRN. The computation results show that the 3 × 6 ×  n CCRN's equivalent resistance is decided by the number of circuit stages n , and as n goes to infinity, these equivalent resistances all tend to a definite limit value.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cta.3632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9861-0541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-9886
ispartof International journal of circuit theory and applications, 2023-09, Vol.51 (9), p.4071-4084
issn 0098-9886
1097-007X
language eng
recordid cdi_proquest_journals_2861286846
source Wiley-Blackwell Read & Publish Collection
subjects Equivalence
title Electrical performance of the 3 × 6 ×  n cobweb cascade resistance network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20performance%20of%20the%203%E2%80%89%C3%97%E2%80%896%E2%80%89%C3%97%E2%80%89%20n%20cobweb%20cascade%20resistance%20network&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Luo,%20Feng%E2%80%90Hua&rft.date=2023-09&rft.volume=51&rft.issue=9&rft.spage=4071&rft.epage=4084&rft.pages=4071-4084&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.3632&rft_dat=%3Cproquest_cross%3E2861286846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c131t-91df2f4d0322915c227cb5cc7f18144c54b2285f683a87224f6ec0165130cb3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861286846&rft_id=info:pmid/&rfr_iscdi=true