Loading…

Out-of-Focus Image Deblurring for Mobile Display Vision Inspection

In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2023-09, Vol.33 (9), p.1-1
Main Authors: Min, Sung-Jun, Kong, Kyeongbo, Kang, Suk-Ju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3
cites cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3
container_end_page 1
container_issue 9
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume 33
creator Min, Sung-Jun
Kong, Kyeongbo
Kang, Suk-Ju
description In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.
doi_str_mv 10.1109/TCSVT.2023.3241931
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861467996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036087</ieee_id><sourcerecordid>2861467996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwBxBDJGYXnx3byQiFQqSiDpSuluM4Vao0DnYy9N_j0g4MT_d0eu9O-hC6BzIDIPnTev61Wc8ooWzGaAo5gws0Ac4zTCnhl9ETDjijwK_RTQg7QiDNUjlBL6txwK7GC2fGkBR7vbXJqy3b0fum2ya188mnK5s2bpvQt_qQbJrQuC4putBbM0R7i65q3QZ7d55T9L14W88_8HL1Xsyfl9jQXAzYMKYZ47UshSWcWpCUU15GSRolZQUVM1wzA7aswQomM55pqEpDmC0rNkWPp7u9dz-jDYPaudF38aWimYBUyDwXMUVPKeNdCN7WqvfNXvuDAqKOrNQfK3Vkpc6sYunhVGqstf8KhAmSSfYL7e5kbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861467996</pqid></control><display><type>article</type><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><source>IEEE Xplore (Online service)</source><creator>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</creator><creatorcontrib>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</creatorcontrib><description>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3241931</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Frequency analysis ; Frequency domain analysis ; Image acquisition ; Image contrast ; image deblurring ; Image degradation ; Image edge detection ; Image quality ; Image restoration ; Inspection ; Kernel ; Kernels ; Moire patterns ; out-of-focus image ; Task analysis ; Training ; Vision inspection</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-09, Vol.33 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</citedby><cites>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</cites><orcidid>0000-0002-4809-956X ; 0000-0002-1135-7502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Min, Sung-Jun</creatorcontrib><creatorcontrib>Kong, Kyeongbo</creatorcontrib><creatorcontrib>Kang, Suk-Ju</creatorcontrib><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</description><subject>Cameras</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>image deblurring</subject><subject>Image degradation</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Inspection</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Moire patterns</subject><subject>out-of-focus image</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vision inspection</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhS0EEqXwBxBDJGYXnx3byQiFQqSiDpSuluM4Vao0DnYy9N_j0g4MT_d0eu9O-hC6BzIDIPnTev61Wc8ooWzGaAo5gws0Ac4zTCnhl9ETDjijwK_RTQg7QiDNUjlBL6txwK7GC2fGkBR7vbXJqy3b0fum2ya188mnK5s2bpvQt_qQbJrQuC4putBbM0R7i65q3QZ7d55T9L14W88_8HL1Xsyfl9jQXAzYMKYZ47UshSWcWpCUU15GSRolZQUVM1wzA7aswQomM55pqEpDmC0rNkWPp7u9dz-jDYPaudF38aWimYBUyDwXMUVPKeNdCN7WqvfNXvuDAqKOrNQfK3Vkpc6sYunhVGqstf8KhAmSSfYL7e5kbQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Min, Sung-Jun</creator><creator>Kong, Kyeongbo</creator><creator>Kang, Suk-Ju</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4809-956X</orcidid><orcidid>https://orcid.org/0000-0002-1135-7502</orcidid></search><sort><creationdate>20230901</creationdate><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><author>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>image deblurring</topic><topic>Image degradation</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Inspection</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Moire patterns</topic><topic>out-of-focus image</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vision inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Sung-Jun</creatorcontrib><creatorcontrib>Kong, Kyeongbo</creatorcontrib><creatorcontrib>Kang, Suk-Ju</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Sung-Jun</au><au>Kong, Kyeongbo</au><au>Kang, Suk-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3241931</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4809-956X</orcidid><orcidid>https://orcid.org/0000-0002-1135-7502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2023-09, Vol.33 (9), p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2861467996
source IEEE Xplore (Online service)
subjects Cameras
Frequency analysis
Frequency domain analysis
Image acquisition
Image contrast
image deblurring
Image degradation
Image edge detection
Image quality
Image restoration
Inspection
Kernel
Kernels
Moire patterns
out-of-focus image
Task analysis
Training
Vision inspection
title Out-of-Focus Image Deblurring for Mobile Display Vision Inspection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Out-of-Focus%20Image%20Deblurring%20for%20Mobile%20Display%20Vision%20Inspection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Min,%20Sung-Jun&rft.date=2023-09-01&rft.volume=33&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3241931&rft_dat=%3Cproquest_cross%3E2861467996%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861467996&rft_id=info:pmid/&rft_ieee_id=10036087&rfr_iscdi=true