Loading…
Out-of-Focus Image Deblurring for Mobile Display Vision Inspection
In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring me...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2023-09, Vol.33 (9), p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3 |
container_end_page | 1 |
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 33 |
creator | Min, Sung-Jun Kong, Kyeongbo Kang, Suk-Ju |
description | In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis. |
doi_str_mv | 10.1109/TCSVT.2023.3241931 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2861467996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036087</ieee_id><sourcerecordid>2861467996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwBxBDJGYXnx3byQiFQqSiDpSuluM4Vao0DnYy9N_j0g4MT_d0eu9O-hC6BzIDIPnTev61Wc8ooWzGaAo5gws0Ac4zTCnhl9ETDjijwK_RTQg7QiDNUjlBL6txwK7GC2fGkBR7vbXJqy3b0fum2ya188mnK5s2bpvQt_qQbJrQuC4putBbM0R7i65q3QZ7d55T9L14W88_8HL1Xsyfl9jQXAzYMKYZ47UshSWcWpCUU15GSRolZQUVM1wzA7aswQomM55pqEpDmC0rNkWPp7u9dz-jDYPaudF38aWimYBUyDwXMUVPKeNdCN7WqvfNXvuDAqKOrNQfK3Vkpc6sYunhVGqstf8KhAmSSfYL7e5kbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861467996</pqid></control><display><type>article</type><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><source>IEEE Xplore (Online service)</source><creator>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</creator><creatorcontrib>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</creatorcontrib><description>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3241931</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Frequency analysis ; Frequency domain analysis ; Image acquisition ; Image contrast ; image deblurring ; Image degradation ; Image edge detection ; Image quality ; Image restoration ; Inspection ; Kernel ; Kernels ; Moire patterns ; out-of-focus image ; Task analysis ; Training ; Vision inspection</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-09, Vol.33 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</citedby><cites>FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</cites><orcidid>0000-0002-4809-956X ; 0000-0002-1135-7502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Min, Sung-Jun</creatorcontrib><creatorcontrib>Kong, Kyeongbo</creatorcontrib><creatorcontrib>Kang, Suk-Ju</creatorcontrib><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</description><subject>Cameras</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>image deblurring</subject><subject>Image degradation</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Inspection</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Moire patterns</subject><subject>out-of-focus image</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vision inspection</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhS0EEqXwBxBDJGYXnx3byQiFQqSiDpSuluM4Vao0DnYy9N_j0g4MT_d0eu9O-hC6BzIDIPnTev61Wc8ooWzGaAo5gws0Ac4zTCnhl9ETDjijwK_RTQg7QiDNUjlBL6txwK7GC2fGkBR7vbXJqy3b0fum2ya188mnK5s2bpvQt_qQbJrQuC4putBbM0R7i65q3QZ7d55T9L14W88_8HL1Xsyfl9jQXAzYMKYZ47UshSWcWpCUU15GSRolZQUVM1wzA7aswQomM55pqEpDmC0rNkWPp7u9dz-jDYPaudF38aWimYBUyDwXMUVPKeNdCN7WqvfNXvuDAqKOrNQfK3Vkpc6sYunhVGqstf8KhAmSSfYL7e5kbQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Min, Sung-Jun</creator><creator>Kong, Kyeongbo</creator><creator>Kang, Suk-Ju</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4809-956X</orcidid><orcidid>https://orcid.org/0000-0002-1135-7502</orcidid></search><sort><creationdate>20230901</creationdate><title>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</title><author>Min, Sung-Jun ; Kong, Kyeongbo ; Kang, Suk-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>image deblurring</topic><topic>Image degradation</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Inspection</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Moire patterns</topic><topic>out-of-focus image</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vision inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Sung-Jun</creatorcontrib><creatorcontrib>Kong, Kyeongbo</creatorcontrib><creatorcontrib>Kang, Suk-Ju</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Sung-Jun</au><au>Kong, Kyeongbo</au><au>Kang, Suk-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Out-of-Focus Image Deblurring for Mobile Display Vision Inspection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In vision inspection tasks, moiré patterns caused by frequency aliasing can severely degrade image quality. To prevent moiré patterns, we used images that were intentionally out-of-focused, and we performed deblurring to restore details during the acquisition of the images. As existing deblurring methods fail to output satisfactory results for low-contrast Mura images, we applied some simple techniques, minimum-maximum normalization, and edge mask fine-tuning to one of the state-of-the-art non-blind deblurring methods by utilizing parametric generalized Gaussian kernels. Structural image details were preserved through edge mask fine-tuning, and image contrast was improved with minimum-maximum normalization. By parameterizing the blur kernel as a generalized Gaussian kernel, we greatly improved the robustness of the blind image deblurring. We evaluated the effects of each module by conducting thorough experiments. The proposed method showed better performance than existing blind deblurring methods for blur-specific no-reference metrics, the image profile, and frequency domain analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3241931</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4809-956X</orcidid><orcidid>https://orcid.org/0000-0002-1135-7502</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2023-09, Vol.33 (9), p.1-1 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2861467996 |
source | IEEE Xplore (Online service) |
subjects | Cameras Frequency analysis Frequency domain analysis Image acquisition Image contrast image deblurring Image degradation Image edge detection Image quality Image restoration Inspection Kernel Kernels Moire patterns out-of-focus image Task analysis Training Vision inspection |
title | Out-of-Focus Image Deblurring for Mobile Display Vision Inspection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Out-of-Focus%20Image%20Deblurring%20for%20Mobile%20Display%20Vision%20Inspection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Min,%20Sung-Jun&rft.date=2023-09-01&rft.volume=33&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3241931&rft_dat=%3Cproquest_cross%3E2861467996%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-c33a335f7b6e052e172525b5257225777d1d3c5a3c1ebf1e637858a1dbc03ebd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861467996&rft_id=info:pmid/&rft_ieee_id=10036087&rfr_iscdi=true |