Loading…
3D View Prediction Models of the Dorsal Visual Stream
Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural respons...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sarch, Gabriel Hsiao-Yu, Fish Tung Wang, Aria Prince, Jacob Tarr, Michael |
description | Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861504447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861504447</sourcerecordid><originalsourceid>FETCH-proquest_journals_28615044473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwNXZRCMtMLVcIKEpNyUwuyczPU_DNT0nNKVbIT1MoyUhVcMkvKk7MASoqLgVSwSVFqYm5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RhZmhqYGJiYm5MnCoACiUz7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861504447</pqid></control><display><type>article</type><title>3D View Prediction Models of the Dorsal Visual Stream</title><source>Publicly Available Content Database</source><creator>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</creator><creatorcontrib>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</creatorcontrib><description>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Brain ; Prediction models ; Recurrent neural networks ; Three dimensional models</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2861504447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sarch, Gabriel</creatorcontrib><creatorcontrib>Hsiao-Yu, Fish Tung</creatorcontrib><creatorcontrib>Wang, Aria</creatorcontrib><creatorcontrib>Prince, Jacob</creatorcontrib><creatorcontrib>Tarr, Michael</creatorcontrib><title>3D View Prediction Models of the Dorsal Visual Stream</title><title>arXiv.org</title><description>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwNXZRCMtMLVcIKEpNyUwuyczPU_DNT0nNKVbIT1MoyUhVcMkvKk7MASoqLgVSwSVFqYm5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RhZmhqYGJiYm5MnCoACiUz7g</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Sarch, Gabriel</creator><creator>Hsiao-Yu, Fish Tung</creator><creator>Wang, Aria</creator><creator>Prince, Jacob</creator><creator>Tarr, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230904</creationdate><title>3D View Prediction Models of the Dorsal Visual Stream</title><author>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28615044473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarch, Gabriel</creatorcontrib><creatorcontrib>Hsiao-Yu, Fish Tung</creatorcontrib><creatorcontrib>Wang, Aria</creatorcontrib><creatorcontrib>Prince, Jacob</creatorcontrib><creatorcontrib>Tarr, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarch, Gabriel</au><au>Hsiao-Yu, Fish Tung</au><au>Wang, Aria</au><au>Prince, Jacob</au><au>Tarr, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>3D View Prediction Models of the Dorsal Visual Stream</atitle><jtitle>arXiv.org</jtitle><date>2023-09-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2861504447 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Brain Prediction models Recurrent neural networks Three dimensional models |
title | 3D View Prediction Models of the Dorsal Visual Stream |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=3D%20View%20Prediction%20Models%20of%20the%20Dorsal%20Visual%20Stream&rft.jtitle=arXiv.org&rft.au=Sarch,%20Gabriel&rft.date=2023-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861504447%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28615044473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861504447&rft_id=info:pmid/&rfr_iscdi=true |