Loading…

3D View Prediction Models of the Dorsal Visual Stream

Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural respons...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-09
Main Authors: Sarch, Gabriel, Hsiao-Yu, Fish Tung, Wang, Aria, Prince, Jacob, Tarr, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sarch, Gabriel
Hsiao-Yu, Fish Tung
Wang, Aria
Prince, Jacob
Tarr, Michael
description Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2861504447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861504447</sourcerecordid><originalsourceid>FETCH-proquest_journals_28615044473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwNXZRCMtMLVcIKEpNyUwuyczPU_DNT0nNKVbIT1MoyUhVcMkvKk7MASoqLgVSwSVFqYm5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RhZmhqYGJiYm5MnCoACiUz7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861504447</pqid></control><display><type>article</type><title>3D View Prediction Models of the Dorsal Visual Stream</title><source>Publicly Available Content Database</source><creator>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</creator><creatorcontrib>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</creatorcontrib><description>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Brain ; Prediction models ; Recurrent neural networks ; Three dimensional models</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2861504447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sarch, Gabriel</creatorcontrib><creatorcontrib>Hsiao-Yu, Fish Tung</creatorcontrib><creatorcontrib>Wang, Aria</creatorcontrib><creatorcontrib>Prince, Jacob</creatorcontrib><creatorcontrib>Tarr, Michael</creatorcontrib><title>3D View Prediction Models of the Dorsal Visual Stream</title><title>arXiv.org</title><description>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Prediction models</subject><subject>Recurrent neural networks</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwNXZRCMtMLVcIKEpNyUwuyczPU_DNT0nNKVbIT1MoyUhVcMkvKk7MASoqLgVSwSVFqYm5PAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RhZmhqYGJiYm5MnCoACiUz7g</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Sarch, Gabriel</creator><creator>Hsiao-Yu, Fish Tung</creator><creator>Wang, Aria</creator><creator>Prince, Jacob</creator><creator>Tarr, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230904</creationdate><title>3D View Prediction Models of the Dorsal Visual Stream</title><author>Sarch, Gabriel ; Hsiao-Yu, Fish Tung ; Wang, Aria ; Prince, Jacob ; Tarr, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28615044473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Prediction models</topic><topic>Recurrent neural networks</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarch, Gabriel</creatorcontrib><creatorcontrib>Hsiao-Yu, Fish Tung</creatorcontrib><creatorcontrib>Wang, Aria</creatorcontrib><creatorcontrib>Prince, Jacob</creatorcontrib><creatorcontrib>Tarr, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarch, Gabriel</au><au>Hsiao-Yu, Fish Tung</au><au>Wang, Aria</au><au>Prince, Jacob</au><au>Tarr, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>3D View Prediction Models of the Dorsal Visual Stream</atitle><jtitle>arXiv.org</jtitle><date>2023-09-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Deep neural network representations align well with brain activity in the ventral visual stream. However, the primate visual system has a distinct dorsal processing stream with different functional properties. To test if a model trained to perceive 3D scene geometry aligns better with neural responses in dorsal visual areas, we trained a self-supervised geometry-aware recurrent neural network (GRNN) to predict novel camera views using a 3D feature memory. We compared GRNN to self-supervised baseline models that have been shown to align well with ventral regions using the large-scale fMRI Natural Scenes Dataset (NSD). We found that while the baseline models accounted better for ventral brain regions, GRNN accounted for a greater proportion of variance in dorsal brain regions. Our findings demonstrate the potential for using task-relevant models to probe representational differences across visual streams.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2861504447
source Publicly Available Content Database
subjects Artificial neural networks
Brain
Prediction models
Recurrent neural networks
Three dimensional models
title 3D View Prediction Models of the Dorsal Visual Stream
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=3D%20View%20Prediction%20Models%20of%20the%20Dorsal%20Visual%20Stream&rft.jtitle=arXiv.org&rft.au=Sarch,%20Gabriel&rft.date=2023-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2861504447%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28615044473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861504447&rft_id=info:pmid/&rfr_iscdi=true