Loading…
Isotonic ion replacement can lower the threshold for selective infrared neural inhibition
Significance: Infrared (IR) inhibition can selectively block peripheral sensory nerve fibers, a potential treatment for autonomic-dysfunction-related diseases (e.g., neuropathic pain and interstitial cystitis). Lowering the IR inhibition threshold can increase its translational potentials. Aim: Infr...
Saved in:
Published in: | Neurophotonics (Print) 2021-01, Vol.8 (1), p.015005-015005 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Significance: Infrared (IR) inhibition can selectively block peripheral sensory nerve fibers, a potential treatment for autonomic-dysfunction-related diseases (e.g., neuropathic pain and interstitial cystitis). Lowering the IR inhibition threshold can increase its translational potentials.
Aim: Infrared induces inhibition by enhancing potassium channel activation. We hypothesized that the IR dose threshold could be reduced by combining it with isotonic ion replacement.
Approach: We tested the IR inhibition threshold on the pleural-abdominal connective of Aplysia californica. Using a customized chamber system, the IR inhibition was applied either in normal saline or in isotonic ion-replaced saline, which could be high glucose saline, high choline saline, or high glucose/high choline saline. Each modified saline was at a subthreshold concentration for inhibiting neural conduction.
Results: We showed that isotonically replacing ions in saline with glucose and/or choline can reduce the IR threshold and temperature threshold of neural inhibition. Furthermore, the size selectivity of IR inhibition was preserved when combined with high glucose/high choline saline.
Conclusions: The present work of IR inhibition combined with isotonic ion replacement will guide further development of a more effective size-selective IR inhibition modality for future research and translational applications. |
---|---|
ISSN: | 2329-423X 2329-4248 |
DOI: | 10.1117/1.NPh.8.1.015005 |