Loading…
Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode
Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this stud...
Saved in:
Published in: | Advanced energy materials 2023-09, Vol.13 (34) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3 |
container_end_page | |
container_issue | 34 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Di, Lu Yufang, Chen Weiwei, Sun Wei, Xie Shuaiyu, Yi Shiqiang, Luo Lanlan, Zuo Yanshuang, Zhao Tianyan, Yang Peitao, Xiao Chunman, Zheng |
description | Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g
−1
at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g
−1
), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes. |
doi_str_mv | 10.1002/aenm.202301765 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862623525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862623525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDlpxjCXlBoKW0ZyMrq1jBllJZPuTWT-g39kuqkpC57DLM7LCD0CMlU0oIe1bguikjjBMqRXGDRlTQPBNlTm6vO2f3aNL3B5KQzyjhfITcXMXG7wAvWtAx-PYUAW9chGCUTqzbWwcQrNvj-oRXQe0suIiX7eATqaL1Dhsf8Nrum9_vn7fk86FTLnm3NjZ26PC71Q2-xDygO6PaHiaXOUafy8XHfJ1tX1eb-cs205zImClaiJkpjSSsVEwyKeqaMEW5ETkwZgxIPUsohc5BKwmFLGX6taxJoWoKfIyeznePwX8N0Mfq4IfgUmTFSsEE4wUrkmp6Vung-z6AqY7BdiqcKkqq_1qr_1qra638D2QsbIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862623525</pqid></control><display><type>article</type><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</creator><creatorcontrib>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</creatorcontrib><description>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g
−1
at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g
−1
), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301765</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electric potential ; Electrolytes ; Fluorination ; Interface stability ; Lithium ; Lithium fluoride ; Lithium ions ; Mathematical analysis ; Oxygen ; Redox reactions ; Voltage</subject><ispartof>Advanced energy materials, 2023-09, Vol.13 (34)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</citedby><cites>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</cites><orcidid>0000-0001-9860-3173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Di, Lu</creatorcontrib><creatorcontrib>Yufang, Chen</creatorcontrib><creatorcontrib>Weiwei, Sun</creatorcontrib><creatorcontrib>Wei, Xie</creatorcontrib><creatorcontrib>Shuaiyu, Yi</creatorcontrib><creatorcontrib>Shiqiang, Luo</creatorcontrib><creatorcontrib>Lanlan, Zuo</creatorcontrib><creatorcontrib>Yanshuang, Zhao</creatorcontrib><creatorcontrib>Tianyan, Yang</creatorcontrib><creatorcontrib>Peitao, Xiao</creatorcontrib><creatorcontrib>Chunman, Zheng</creatorcontrib><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><title>Advanced energy materials</title><description>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g
−1
at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g
−1
), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</description><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Fluorination</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Mathematical analysis</subject><subject>Oxygen</subject><subject>Redox reactions</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDlpxjCXlBoKW0ZyMrq1jBllJZPuTWT-g39kuqkpC57DLM7LCD0CMlU0oIe1bguikjjBMqRXGDRlTQPBNlTm6vO2f3aNL3B5KQzyjhfITcXMXG7wAvWtAx-PYUAW9chGCUTqzbWwcQrNvj-oRXQe0suIiX7eATqaL1Dhsf8Nrum9_vn7fk86FTLnm3NjZ26PC71Q2-xDygO6PaHiaXOUafy8XHfJ1tX1eb-cs205zImClaiJkpjSSsVEwyKeqaMEW5ETkwZgxIPUsohc5BKwmFLGX6taxJoWoKfIyeznePwX8N0Mfq4IfgUmTFSsEE4wUrkmp6Vung-z6AqY7BdiqcKkqq_1qr_1qra638D2QsbIk</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Di, Lu</creator><creator>Yufang, Chen</creator><creator>Weiwei, Sun</creator><creator>Wei, Xie</creator><creator>Shuaiyu, Yi</creator><creator>Shiqiang, Luo</creator><creator>Lanlan, Zuo</creator><creator>Yanshuang, Zhao</creator><creator>Tianyan, Yang</creator><creator>Peitao, Xiao</creator><creator>Chunman, Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9860-3173</orcidid></search><sort><creationdate>20230901</creationdate><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><author>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Fluorination</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Mathematical analysis</topic><topic>Oxygen</topic><topic>Redox reactions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di, Lu</creatorcontrib><creatorcontrib>Yufang, Chen</creatorcontrib><creatorcontrib>Weiwei, Sun</creatorcontrib><creatorcontrib>Wei, Xie</creatorcontrib><creatorcontrib>Shuaiyu, Yi</creatorcontrib><creatorcontrib>Shiqiang, Luo</creatorcontrib><creatorcontrib>Lanlan, Zuo</creatorcontrib><creatorcontrib>Yanshuang, Zhao</creatorcontrib><creatorcontrib>Tianyan, Yang</creatorcontrib><creatorcontrib>Peitao, Xiao</creatorcontrib><creatorcontrib>Chunman, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di, Lu</au><au>Yufang, Chen</au><au>Weiwei, Sun</au><au>Wei, Xie</au><au>Shuaiyu, Yi</au><au>Shiqiang, Luo</au><au>Lanlan, Zuo</au><au>Yanshuang, Zhao</au><au>Tianyan, Yang</au><au>Peitao, Xiao</au><au>Chunman, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</atitle><jtitle>Advanced energy materials</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>34</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g
−1
at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g
−1
), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301765</doi><orcidid>https://orcid.org/0000-0001-9860-3173</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-09, Vol.13 (34) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2862623525 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cathodes Electric potential Electrolytes Fluorination Interface stability Lithium Lithium fluoride Lithium ions Mathematical analysis Oxygen Redox reactions Voltage |
title | Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Electrolyte%20Interface%20Engineering%20by%20Gradient%20Fluorination%20for%20High%E2%80%90Performance%20Lithium%20Rich%20Cathode&rft.jtitle=Advanced%20energy%20materials&rft.au=Di,%20Lu&rft.date=2023-09-01&rft.volume=13&rft.issue=34&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301765&rft_dat=%3Cproquest_cross%3E2862623525%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862623525&rft_id=info:pmid/&rfr_iscdi=true |