Loading…

Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode

Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-09, Vol.13 (34)
Main Authors: Di, Lu, Yufang, Chen, Weiwei, Sun, Wei, Xie, Shuaiyu, Yi, Shiqiang, Luo, Lanlan, Zuo, Yanshuang, Zhao, Tianyan, Yang, Peitao, Xiao, Chunman, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3
cites cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3
container_end_page
container_issue 34
container_start_page
container_title Advanced energy materials
container_volume 13
creator Di, Lu
Yufang, Chen
Weiwei, Sun
Wei, Xie
Shuaiyu, Yi
Shiqiang, Luo
Lanlan, Zuo
Yanshuang, Zhao
Tianyan, Yang
Peitao, Xiao
Chunman, Zheng
description Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g −1 at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g −1 ), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.
doi_str_mv 10.1002/aenm.202301765
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2862623525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862623525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDlpxjCXlBoKW0ZyMrq1jBllJZPuTWT-g39kuqkpC57DLM7LCD0CMlU0oIe1bguikjjBMqRXGDRlTQPBNlTm6vO2f3aNL3B5KQzyjhfITcXMXG7wAvWtAx-PYUAW9chGCUTqzbWwcQrNvj-oRXQe0suIiX7eATqaL1Dhsf8Nrum9_vn7fk86FTLnm3NjZ26PC71Q2-xDygO6PaHiaXOUafy8XHfJ1tX1eb-cs205zImClaiJkpjSSsVEwyKeqaMEW5ETkwZgxIPUsohc5BKwmFLGX6taxJoWoKfIyeznePwX8N0Mfq4IfgUmTFSsEE4wUrkmp6Vung-z6AqY7BdiqcKkqq_1qr_1qra638D2QsbIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862623525</pqid></control><display><type>article</type><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</creator><creatorcontrib>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</creatorcontrib><description>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g −1 at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g −1 ), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301765</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Electric potential ; Electrolytes ; Fluorination ; Interface stability ; Lithium ; Lithium fluoride ; Lithium ions ; Mathematical analysis ; Oxygen ; Redox reactions ; Voltage</subject><ispartof>Advanced energy materials, 2023-09, Vol.13 (34)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</citedby><cites>FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</cites><orcidid>0000-0001-9860-3173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Di, Lu</creatorcontrib><creatorcontrib>Yufang, Chen</creatorcontrib><creatorcontrib>Weiwei, Sun</creatorcontrib><creatorcontrib>Wei, Xie</creatorcontrib><creatorcontrib>Shuaiyu, Yi</creatorcontrib><creatorcontrib>Shiqiang, Luo</creatorcontrib><creatorcontrib>Lanlan, Zuo</creatorcontrib><creatorcontrib>Yanshuang, Zhao</creatorcontrib><creatorcontrib>Tianyan, Yang</creatorcontrib><creatorcontrib>Peitao, Xiao</creatorcontrib><creatorcontrib>Chunman, Zheng</creatorcontrib><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><title>Advanced energy materials</title><description>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g −1 at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g −1 ), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</description><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrolytes</subject><subject>Fluorination</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Mathematical analysis</subject><subject>Oxygen</subject><subject>Redox reactions</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWFhjTXngU9O9XDlpxjCXlBoKW0ZyMrq1jBllJZPuTWT-g39kuqkpC57DLM7LCD0CMlU0oIe1bguikjjBMqRXGDRlTQPBNlTm6vO2f3aNL3B5KQzyjhfITcXMXG7wAvWtAx-PYUAW9chGCUTqzbWwcQrNvj-oRXQe0suIiX7eATqaL1Dhsf8Nrum9_vn7fk86FTLnm3NjZ26PC71Q2-xDygO6PaHiaXOUafy8XHfJ1tX1eb-cs205zImClaiJkpjSSsVEwyKeqaMEW5ETkwZgxIPUsohc5BKwmFLGX6taxJoWoKfIyeznePwX8N0Mfq4IfgUmTFSsEE4wUrkmp6Vung-z6AqY7BdiqcKkqq_1qr_1qra638D2QsbIk</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Di, Lu</creator><creator>Yufang, Chen</creator><creator>Weiwei, Sun</creator><creator>Wei, Xie</creator><creator>Shuaiyu, Yi</creator><creator>Shiqiang, Luo</creator><creator>Lanlan, Zuo</creator><creator>Yanshuang, Zhao</creator><creator>Tianyan, Yang</creator><creator>Peitao, Xiao</creator><creator>Chunman, Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9860-3173</orcidid></search><sort><creationdate>20230901</creationdate><title>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</title><author>Di, Lu ; Yufang, Chen ; Weiwei, Sun ; Wei, Xie ; Shuaiyu, Yi ; Shiqiang, Luo ; Lanlan, Zuo ; Yanshuang, Zhao ; Tianyan, Yang ; Peitao, Xiao ; Chunman, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrolytes</topic><topic>Fluorination</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Mathematical analysis</topic><topic>Oxygen</topic><topic>Redox reactions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di, Lu</creatorcontrib><creatorcontrib>Yufang, Chen</creatorcontrib><creatorcontrib>Weiwei, Sun</creatorcontrib><creatorcontrib>Wei, Xie</creatorcontrib><creatorcontrib>Shuaiyu, Yi</creatorcontrib><creatorcontrib>Shiqiang, Luo</creatorcontrib><creatorcontrib>Lanlan, Zuo</creatorcontrib><creatorcontrib>Yanshuang, Zhao</creatorcontrib><creatorcontrib>Tianyan, Yang</creatorcontrib><creatorcontrib>Peitao, Xiao</creatorcontrib><creatorcontrib>Chunman, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di, Lu</au><au>Yufang, Chen</au><au>Weiwei, Sun</au><au>Wei, Xie</au><au>Shuaiyu, Yi</au><au>Shiqiang, Luo</au><au>Lanlan, Zuo</au><au>Yanshuang, Zhao</au><au>Tianyan, Yang</au><au>Peitao, Xiao</au><au>Chunman, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode</atitle><jtitle>Advanced energy materials</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>34</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Despite their ultrahigh specific capacity, lithium‐rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF‐rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium‐rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium‐rich cathode delivers highly enhanced rate performance (133 mAh g −1 at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g −1 ), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF‐rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF‐rich CEIs applicable to other layered oxide cathodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301765</doi><orcidid>https://orcid.org/0000-0001-9860-3173</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-09, Vol.13 (34)
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2862623525
source Wiley-Blackwell Read & Publish Collection
subjects Cathodes
Electric potential
Electrolytes
Fluorination
Interface stability
Lithium
Lithium fluoride
Lithium ions
Mathematical analysis
Oxygen
Redox reactions
Voltage
title Cathode Electrolyte Interface Engineering by Gradient Fluorination for High‐Performance Lithium Rich Cathode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Electrolyte%20Interface%20Engineering%20by%20Gradient%20Fluorination%20for%20High%E2%80%90Performance%20Lithium%20Rich%20Cathode&rft.jtitle=Advanced%20energy%20materials&rft.au=Di,%20Lu&rft.date=2023-09-01&rft.volume=13&rft.issue=34&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301765&rft_dat=%3Cproquest_cross%3E2862623525%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a1569f8f7028a27276bb02a13f64e22ffe7c999986c4eca7e57878408b05ab1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862623525&rft_id=info:pmid/&rfr_iscdi=true