Loading…
Effects of Confining Stress on Blast-Induced Damage Distribution of Rock with Discontinuity
Discontinuous rock mass, such as joints and fractures, have a great influence on the blasting quality and sometimes induce additional damage at the discontinuity. In deep rock engineering, high in situ stress makes the damage mechanism of rock with discontinuity under blasting loading more complicat...
Saved in:
Published in: | Sustainability 2023-09, Vol.15 (17), p.13278 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Discontinuous rock mass, such as joints and fractures, have a great influence on the blasting quality and sometimes induce additional damage at the discontinuity. In deep rock engineering, high in situ stress makes the damage mechanism of rock with discontinuity under blasting loading more complicated. Quantitative analysis of blast-induced damage in discontinuous rock under high in situ stress is of great importance in guiding the fine blast design. In this paper, a series of numerical models have been established to quantitatively investigate the effect of confining stress and inclination angle on blast-induced damage of rock with discontinuity. The numerical results show that the discontinuity obviously changes the distribution mode of blast-induced damage, and there is more damage near the discontinuity. The blast-induced damage crack length of discontinuous rock decreases as hydrostatic stress rises. Under non-hydrostatic stress, the damage crack propagation appears to have a higher tendency in the higher confining stress direction. In addition, the inclination angle of discontinuity will affect the damage distribution of rock with discontinuity. The fragmentation degree is greatest when the discontinuity is perpendicular to the direction of higher confining stress. Due to the presence of discontinuity, the guiding effect of higher confining stress on damaged cracks is weakened. The results provide a reference for the tunnel fine-blasting design of rock with discontinuity. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su151713278 |