Loading…
Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP
In expressive and controllable Text-to-Speech (TTS), explicit prosodic features significantly improve the naturalness and controllability of synthesised speech. However, manual prosody annotation is labor-intensive and inconsistent. To address this issue, a two-stage automatic annotation pipeline is...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhong, Jinzuomu Yang, Li Huang, Hui Richmond, Korin Liu, Jie Su, Zhiba Guo, Jing Tang, Benlai Zhu, Fengjie |
description | In expressive and controllable Text-to-Speech (TTS), explicit prosodic features significantly improve the naturalness and controllability of synthesised speech. However, manual prosody annotation is labor-intensive and inconsistent. To address this issue, a two-stage automatic annotation pipeline is novelly proposed in this paper. In the first stage, we use contrastive pretraining of Speech-Silence and Word-Punctuation (SSWP) pairs to enhance prosodic information in latent representations. In the second stage, we build a multi-modal prosody annotator, comprising pretrained encoders, a text-speech fusing scheme, and a sequence classifier. Experiments on English prosodic boundaries demonstrate that our method achieves state-of-the-art (SOTA) performance with 0.72 and 0.93 f1 score for Prosodic Word and Prosodic Phrase boundary respectively, while bearing remarkable robustness to data scarcity. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2864014247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014247</sourcerecordid><originalsourceid>FETCH-proquest_journals_28640142473</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWLT_EHBdSNP0sS1FcVMoVHApwaaaUnM1uVH8e7PwA1zNYc4sSMSzLE0qwfmKxM5NjDFelDzPs4i0rZ9RJy0Mcqa1R7hL1BfaWXAwfGhtDGAwYOhb4402YNBKh_qlQqPC1kabK4WR9v2p25DlKGen4h_XZLvfHZtD8rDw9MrheQJvTbjOvCoESwUXZfZf9QWmhT3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014247</pqid></control><display><type>article</type><title>Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP</title><source>Publicly Available Content Database</source><creator>Zhong, Jinzuomu ; Yang, Li ; Huang, Hui ; Richmond, Korin ; Liu, Jie ; Su, Zhiba ; Guo, Jing ; Tang, Benlai ; Zhu, Fengjie</creator><creatorcontrib>Zhong, Jinzuomu ; Yang, Li ; Huang, Hui ; Richmond, Korin ; Liu, Jie ; Su, Zhiba ; Guo, Jing ; Tang, Benlai ; Zhu, Fengjie</creatorcontrib><description>In expressive and controllable Text-to-Speech (TTS), explicit prosodic features significantly improve the naturalness and controllability of synthesised speech. However, manual prosody annotation is labor-intensive and inconsistent. To address this issue, a two-stage automatic annotation pipeline is novelly proposed in this paper. In the first stage, we use contrastive pretraining of Speech-Silence and Word-Punctuation (SSWP) pairs to enhance prosodic information in latent representations. In the second stage, we build a multi-modal prosody annotator, comprising pretrained encoders, a text-speech fusing scheme, and a sequence classifier. Experiments on English prosodic boundaries demonstrate that our method achieves state-of-the-art (SOTA) performance with 0.72 and 0.93 f1 score for Prosodic Word and Prosodic Phrase boundary respectively, while bearing remarkable robustness to data scarcity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Coders ; Hammers ; Linguistics ; Speech ; Speech recognition</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2864014247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhong, Jinzuomu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Richmond, Korin</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Su, Zhiba</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Tang, Benlai</creatorcontrib><creatorcontrib>Zhu, Fengjie</creatorcontrib><title>Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP</title><title>arXiv.org</title><description>In expressive and controllable Text-to-Speech (TTS), explicit prosodic features significantly improve the naturalness and controllability of synthesised speech. However, manual prosody annotation is labor-intensive and inconsistent. To address this issue, a two-stage automatic annotation pipeline is novelly proposed in this paper. In the first stage, we use contrastive pretraining of Speech-Silence and Word-Punctuation (SSWP) pairs to enhance prosodic information in latent representations. In the second stage, we build a multi-modal prosody annotator, comprising pretrained encoders, a text-speech fusing scheme, and a sequence classifier. Experiments on English prosodic boundaries demonstrate that our method achieves state-of-the-art (SOTA) performance with 0.72 and 0.93 f1 score for Prosodic Word and Prosodic Phrase boundary respectively, while bearing remarkable robustness to data scarcity.</description><subject>Annotations</subject><subject>Coders</subject><subject>Hammers</subject><subject>Linguistics</subject><subject>Speech</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAUBYMgWLT_EHBdSNP0sS1FcVMoVHApwaaaUnM1uVH8e7PwA1zNYc4sSMSzLE0qwfmKxM5NjDFelDzPs4i0rZ9RJy0Mcqa1R7hL1BfaWXAwfGhtDGAwYOhb4402YNBKh_qlQqPC1kabK4WR9v2p25DlKGen4h_XZLvfHZtD8rDw9MrheQJvTbjOvCoESwUXZfZf9QWmhT3o</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Zhong, Jinzuomu</creator><creator>Yang, Li</creator><creator>Huang, Hui</creator><creator>Richmond, Korin</creator><creator>Liu, Jie</creator><creator>Su, Zhiba</creator><creator>Guo, Jing</creator><creator>Tang, Benlai</creator><creator>Zhu, Fengjie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240611</creationdate><title>Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP</title><author>Zhong, Jinzuomu ; Yang, Li ; Huang, Hui ; Richmond, Korin ; Liu, Jie ; Su, Zhiba ; Guo, Jing ; Tang, Benlai ; Zhu, Fengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28640142473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Coders</topic><topic>Hammers</topic><topic>Linguistics</topic><topic>Speech</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Jinzuomu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Richmond, Korin</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Su, Zhiba</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Tang, Benlai</creatorcontrib><creatorcontrib>Zhu, Fengjie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Jinzuomu</au><au>Yang, Li</au><au>Huang, Hui</au><au>Richmond, Korin</au><au>Liu, Jie</au><au>Su, Zhiba</au><au>Guo, Jing</au><au>Tang, Benlai</au><au>Zhu, Fengjie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP</atitle><jtitle>arXiv.org</jtitle><date>2024-06-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In expressive and controllable Text-to-Speech (TTS), explicit prosodic features significantly improve the naturalness and controllability of synthesised speech. However, manual prosody annotation is labor-intensive and inconsistent. To address this issue, a two-stage automatic annotation pipeline is novelly proposed in this paper. In the first stage, we use contrastive pretraining of Speech-Silence and Word-Punctuation (SSWP) pairs to enhance prosodic information in latent representations. In the second stage, we build a multi-modal prosody annotator, comprising pretrained encoders, a text-speech fusing scheme, and a sequence classifier. Experiments on English prosodic boundaries demonstrate that our method achieves state-of-the-art (SOTA) performance with 0.72 and 0.93 f1 score for Prosodic Word and Prosodic Phrase boundary respectively, while bearing remarkable robustness to data scarcity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2864014247 |
source | Publicly Available Content Database |
subjects | Annotations Coders Hammers Linguistics Speech Speech recognition |
title | Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Modal%20Automatic%20Prosody%20Annotation%20with%20Contrastive%20Pretraining%20of%20SSWP&rft.jtitle=arXiv.org&rft.au=Zhong,%20Jinzuomu&rft.date=2024-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2864014247%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28640142473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864014247&rft_id=info:pmid/&rfr_iscdi=true |