Loading…
Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection
The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discri...
Saved in:
Published in: | IEEE transactions on cybernetics 2023-10, Vol.53 (10), p.6303-6316 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383 |
container_end_page | 6316 |
container_issue | 10 |
container_start_page | 6303 |
container_title | IEEE transactions on cybernetics |
container_volume | 53 |
creator | Zhang, Wandong Wu, Q. M. Jonathan Zhao, W. G. Will Deng, Haojin Yang, Yimin |
description | The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC . |
doi_str_mv | 10.1109/TCYB.2022.3166349 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2865091990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765789</ieee_id><sourcerecordid>2658227520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383</originalsourceid><addsrcrecordid>eNpdkE1LJDEQhoOsqKg_QBaWwF689JjvTo674yeMDKyKeDFk0tVruz3pMelG9t-bZsY5mEtC1VMvlQehE0omlBJzdj99-j1hhLEJp0pxYXbQAaNKF4yV8tv2rcp9dJzSK8lH55LRe2ifS6GVVOIAPV83EF30L413LZ4HKKatSwnfdhW0-LHpX_DdsAjQv3fxH667iP_AKkKC0Lu-6QKegYuhCX-xCxWeD32b8_A59ODH9hHarV2b4HhzH6KHy4v76XUxm1_dTH_NCp8X7wvjy4UXRFeCKk-IMbI2QirDPedKS14KBnRBlCx5LYSWqtLS6LqqqWYZ0fwQna5zV7F7GyD1dtkkD23rAnRDskxJPXphJKM_v6Cv3RBD3s6yLIUYasxI0TXlY5dShNquYrN08b-lxI7-7ejfjv7txn-e-bFJHhZLqLYTn7Yz8H0NNACwbZsy_0sb_gEgkYcz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865091990</pqid></control><display><type>article</type><title>Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Wandong ; Wu, Q. M. Jonathan ; Zhao, W. G. Will ; Deng, Haojin ; Yang, Yimin</creator><creatorcontrib>Zhang, Wandong ; Wu, Q. M. Jonathan ; Zhao, W. G. Will ; Deng, Haojin ; Yang, Yimin</creatorcontrib><description>The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC .</description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2022.3166349</identifier><identifier>PMID: 35486564</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anomaly detection ; Classification ; Data analysis ; Data models ; Encoding ; Hierarchical network ; Machine learning ; Moore--Penrose inverse (MPI) ; Multilayers ; Neural networks ; Nonhomogeneous media ; one-class classification (OCC) ; Outliers (statistics) ; Representation learning ; Representations ; Task analysis ; Training</subject><ispartof>IEEE transactions on cybernetics, 2023-10, Vol.53 (10), p.6303-6316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383</citedby><cites>FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383</cites><orcidid>0000-0002-5208-7975 ; 0000-0002-5083-5052 ; 0000-0003-2534-6879 ; 0000-0002-1131-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35486564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wandong</creatorcontrib><creatorcontrib>Wu, Q. M. Jonathan</creatorcontrib><creatorcontrib>Zhao, W. G. Will</creatorcontrib><creatorcontrib>Deng, Haojin</creatorcontrib><creatorcontrib>Yang, Yimin</creatorcontrib><title>Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC .</description><subject>Algorithms</subject><subject>Anomaly detection</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Encoding</subject><subject>Hierarchical network</subject><subject>Machine learning</subject><subject>Moore--Penrose inverse (MPI)</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>one-class classification (OCC)</subject><subject>Outliers (statistics)</subject><subject>Representation learning</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Training</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LJDEQhoOsqKg_QBaWwF689JjvTo674yeMDKyKeDFk0tVruz3pMelG9t-bZsY5mEtC1VMvlQehE0omlBJzdj99-j1hhLEJp0pxYXbQAaNKF4yV8tv2rcp9dJzSK8lH55LRe2ifS6GVVOIAPV83EF30L413LZ4HKKatSwnfdhW0-LHpX_DdsAjQv3fxH667iP_AKkKC0Lu-6QKegYuhCX-xCxWeD32b8_A59ODH9hHarV2b4HhzH6KHy4v76XUxm1_dTH_NCp8X7wvjy4UXRFeCKk-IMbI2QirDPedKS14KBnRBlCx5LYSWqtLS6LqqqWYZ0fwQna5zV7F7GyD1dtkkD23rAnRDskxJPXphJKM_v6Cv3RBD3s6yLIUYasxI0TXlY5dShNquYrN08b-lxI7-7ejfjv7txn-e-bFJHhZLqLYTn7Yz8H0NNACwbZsy_0sb_gEgkYcz</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhang, Wandong</creator><creator>Wu, Q. M. Jonathan</creator><creator>Zhao, W. G. Will</creator><creator>Deng, Haojin</creator><creator>Yang, Yimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5208-7975</orcidid><orcidid>https://orcid.org/0000-0002-5083-5052</orcidid><orcidid>https://orcid.org/0000-0003-2534-6879</orcidid><orcidid>https://orcid.org/0000-0002-1131-2056</orcidid></search><sort><creationdate>20231001</creationdate><title>Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection</title><author>Zhang, Wandong ; Wu, Q. M. Jonathan ; Zhao, W. G. Will ; Deng, Haojin ; Yang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomaly detection</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Encoding</topic><topic>Hierarchical network</topic><topic>Machine learning</topic><topic>Moore--Penrose inverse (MPI)</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>one-class classification (OCC)</topic><topic>Outliers (statistics)</topic><topic>Representation learning</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wandong</creatorcontrib><creatorcontrib>Wu, Q. M. Jonathan</creatorcontrib><creatorcontrib>Zhao, W. G. Will</creatorcontrib><creatorcontrib>Deng, Haojin</creatorcontrib><creatorcontrib>Yang, Yimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wandong</au><au>Wu, Q. M. Jonathan</au><au>Zhao, W. G. Will</au><au>Deng, Haojin</au><au>Yang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>53</volume><issue>10</issue><spage>6303</spage><epage>6316</epage><pages>6303-6316</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The multilayer one-class classification (OCC) frameworks have gained great traction in research on anomaly and outlier detection. However, most multilayer OCC algorithms suffer from loosely connected feature coding, affecting the ability of generated latent space to properly generate a highly discriminative representation between object classes. To alleviate this deficiency, two novel OCC frameworks, namely: 1) OCC structure using the subnetwork neural network (OC-SNN) and 2) maximum correntropy-based OC-SNN (MCOC-SNN), are proposed in this article. The novelties of this article are as follows: 1) the subnetwork is used to build the discriminative latent space; 2) the proposed models are one-step learning networks, instead of stacking feature learning blocks and final classification layer to recognize the input pattern; 3) unlike existing works which utilize mean square error (MSE) to learn low-dimensional features, the MCOC-SNN uses maximum correntropy criterion (MCC) for discriminative feature encoding; and 4) a brand-new OCC dataset, called CO-Mask, is built for this research. Experimental results on the visual classification domain with a varying number of training samples from 6131 to 513 061 demonstrate that the proposed OC-SNN and MCOC-SNN achieve superior performance compared to the existing multilayer OCC models. For reproducibility, the source codes are available at https://github.com/W1AE/OCC .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35486564</pmid><doi>10.1109/TCYB.2022.3166349</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5208-7975</orcidid><orcidid>https://orcid.org/0000-0002-5083-5052</orcidid><orcidid>https://orcid.org/0000-0003-2534-6879</orcidid><orcidid>https://orcid.org/0000-0002-1131-2056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2023-10, Vol.53 (10), p.6303-6316 |
issn | 2168-2267 2168-2275 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2865091990 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Anomaly detection Classification Data analysis Data models Encoding Hierarchical network Machine learning Moore--Penrose inverse (MPI) Multilayers Neural networks Nonhomogeneous media one-class classification (OCC) Outliers (statistics) Representation learning Representations Task analysis Training |
title | Hierarchical One-Class Model With Subnetwork for Representation Learning and Outlier Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20One-Class%20Model%20With%20Subnetwork%20for%20Representation%20Learning%20and%20Outlier%20Detection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Wandong&rft.date=2023-10-01&rft.volume=53&rft.issue=10&rft.spage=6303&rft.epage=6316&rft.pages=6303-6316&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2022.3166349&rft_dat=%3Cproquest_pubme%3E2658227520%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-9c7bc408d416c00995f945693c336853742e1b06573f44856d8598fdf182c3383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865091990&rft_id=info:pmid/35486564&rft_ieee_id=9765789&rfr_iscdi=true |