Loading…
GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes
\(\textit{De Novo}\) Genome assembly is one of the most important tasks in computational biology. ELBA is the state-of-the-art distributed-memory parallel algorithm for overlap detection and layout simplification steps of \(\textit{De Novo}\) genome assembly but exists a performance bottleneck in pa...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Minhao Wang, Siyu Guanghao Wei |
description | \(\textit{De Novo}\) Genome assembly is one of the most important tasks in computational biology. ELBA is the state-of-the-art distributed-memory parallel algorithm for overlap detection and layout simplification steps of \(\textit{De Novo}\) genome assembly but exists a performance bottleneck in pairwise alignment. In this work, we proposed 3 GPU schedulers for ELBA to accommodate multiple MPI processes and multiple GPUs. The GPU schedulers enable multiple MPI processes to perform computation on GPUs in a round-robin fashion. Both strong and weak scaling experiments show that 3 schedulers are able to significantly improve the performance of baseline while there is a trade-off between parallelism and GPU scheduler overhead. For the best performance implementation, the one-to-one scheduler achieves \(\sim\)7-8\(\times\) speed-up using 25 MPI processes compared with the baseline vanilla ELBA GPU scheduler. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2865136659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865136659</sourcerecordid><originalsourceid>FETCH-proquest_journals_28651366593</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLOjWlh2jzDoYgnWWsk9UprPNFf37PPQDOr2H550QhzIWeOGK0hlxjWl836diTTlnDoni9ApZUeHDStRQKg17hLN6KYixUy3C1hhs7_ID73qoILFyqHuJkKQnSLUqcGSzINPyJg26v87J8hBddkev1-pp0Qx5o6zuRsppKHjAhOAb9t_1BdbvOc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865136659</pqid></control><display><type>article</type><title>GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes</title><source>Publicly Available Content Database</source><creator>Li, Minhao ; Wang, Siyu ; Guanghao Wei</creator><creatorcontrib>Li, Minhao ; Wang, Siyu ; Guanghao Wei</creatorcontrib><description>\(\textit{De Novo}\) Genome assembly is one of the most important tasks in computational biology. ELBA is the state-of-the-art distributed-memory parallel algorithm for overlap detection and layout simplification steps of \(\textit{De Novo}\) genome assembly but exists a performance bottleneck in pairwise alignment. In this work, we proposed 3 GPU schedulers for ELBA to accommodate multiple MPI processes and multiple GPUs. The GPU schedulers enable multiple MPI processes to perform computation on GPUs in a round-robin fashion. Both strong and weak scaling experiments show that 3 schedulers are able to significantly improve the performance of baseline while there is a trade-off between parallelism and GPU scheduler overhead. For the best performance implementation, the one-to-one scheduler achieves \(\sim\)7-8\(\times\) speed-up using 25 MPI processes compared with the baseline vanilla ELBA GPU scheduler.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Assembly ; Distributed memory ; Performance enhancement</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2865136659?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Minhao</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Guanghao Wei</creatorcontrib><title>GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes</title><title>arXiv.org</title><description>\(\textit{De Novo}\) Genome assembly is one of the most important tasks in computational biology. ELBA is the state-of-the-art distributed-memory parallel algorithm for overlap detection and layout simplification steps of \(\textit{De Novo}\) genome assembly but exists a performance bottleneck in pairwise alignment. In this work, we proposed 3 GPU schedulers for ELBA to accommodate multiple MPI processes and multiple GPUs. The GPU schedulers enable multiple MPI processes to perform computation on GPUs in a round-robin fashion. Both strong and weak scaling experiments show that 3 schedulers are able to significantly improve the performance of baseline while there is a trade-off between parallelism and GPU scheduler overhead. For the best performance implementation, the one-to-one scheduler achieves \(\sim\)7-8\(\times\) speed-up using 25 MPI processes compared with the baseline vanilla ELBA GPU scheduler.</description><subject>Algorithms</subject><subject>Assembly</subject><subject>Distributed memory</subject><subject>Performance enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLOjWlh2jzDoYgnWWsk9UprPNFf37PPQDOr2H550QhzIWeOGK0hlxjWl836diTTlnDoni9ApZUeHDStRQKg17hLN6KYixUy3C1hhs7_ID73qoILFyqHuJkKQnSLUqcGSzINPyJg26v87J8hBddkev1-pp0Qx5o6zuRsppKHjAhOAb9t_1BdbvOc0</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Li, Minhao</creator><creator>Wang, Siyu</creator><creator>Guanghao Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231010</creationdate><title>GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes</title><author>Li, Minhao ; Wang, Siyu ; Guanghao Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28651366593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Assembly</topic><topic>Distributed memory</topic><topic>Performance enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Minhao</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Guanghao Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Minhao</au><au>Wang, Siyu</au><au>Guanghao Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes</atitle><jtitle>arXiv.org</jtitle><date>2023-10-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>\(\textit{De Novo}\) Genome assembly is one of the most important tasks in computational biology. ELBA is the state-of-the-art distributed-memory parallel algorithm for overlap detection and layout simplification steps of \(\textit{De Novo}\) genome assembly but exists a performance bottleneck in pairwise alignment. In this work, we proposed 3 GPU schedulers for ELBA to accommodate multiple MPI processes and multiple GPUs. The GPU schedulers enable multiple MPI processes to perform computation on GPUs in a round-robin fashion. Both strong and weak scaling experiments show that 3 schedulers are able to significantly improve the performance of baseline while there is a trade-off between parallelism and GPU scheduler overhead. For the best performance implementation, the one-to-one scheduler achieves \(\sim\)7-8\(\times\) speed-up using 25 MPI processes compared with the baseline vanilla ELBA GPU scheduler.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2865136659 |
source | Publicly Available Content Database |
subjects | Algorithms Assembly Distributed memory Performance enhancement |
title | GPU Scheduler for De Novo Genome Assembly with Multiple MPI Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GPU%20Scheduler%20for%20De%20Novo%20Genome%20Assembly%20with%20Multiple%20MPI%20Processes&rft.jtitle=arXiv.org&rft.au=Li,%20Minhao&rft.date=2023-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2865136659%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28651366593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865136659&rft_id=info:pmid/&rfr_iscdi=true |