Loading…

A computational method for determining the linear elastic properties of 2D aperiodic lattice structures

This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenizati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of strain analysis for engineering design 2023-10, Vol.58 (7), p.590-602
Main Authors: Imediegwu, Chikwesiri, Grimm, Uwe, Moat, Richard, Jowers, Iestyn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43
cites cdi_FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43
container_end_page 602
container_issue 7
container_start_page 590
container_title Journal of strain analysis for engineering design
container_volume 58
creator Imediegwu, Chikwesiri
Grimm, Uwe
Moat, Richard
Jowers, Iestyn
description This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.
doi_str_mv 10.1177/03093247221150666
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2865477886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_03093247221150666</sage_id><sourcerecordid>2865477886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9dQ857Es9QkFN7oeMslNmzIzGZPMwn9vSgUX4upyOd853HsQuqVkRWlV3RNOGs5ExRilkpRleYYWjAhacMrJOVoc9eIIXKKrGA-E0EoKtkC7NdZ-mOakkvOj6vEAae8Ntj5gAwnC4EY37nDaA-7dCCpg6FVMTuMp-AlCchCxt5g9YJVX502WepUyATimMOs0B4jX6MKqPsLNz1yij6fH981LsX17ft2st4XmUqaiNJaRxnJmG1JRVlra8UZZILqxDSUdNRRE0xlttVBC1nVZm0ry2nJpSKcFX6K7U26-7nOGmNqDn0N-LLasLqWoquzJFD1ROvgYA9h2Cm5Q4aulpD322f7pM3tWJ09UO_hN_d_wDYULdjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865477886</pqid></control><display><type>article</type><title>A computational method for determining the linear elastic properties of 2D aperiodic lattice structures</title><source>Sage Journals Online</source><creator>Imediegwu, Chikwesiri ; Grimm, Uwe ; Moat, Richard ; Jowers, Iestyn</creator><creatorcontrib>Imediegwu, Chikwesiri ; Grimm, Uwe ; Moat, Richard ; Jowers, Iestyn</creatorcontrib><description>This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.</description><identifier>ISSN: 0309-3247</identifier><identifier>EISSN: 2041-3130</identifier><identifier>DOI: 10.1177/03093247221150666</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerospace engineering ; Aerospace industry ; Bioengineering ; Boundary conditions ; Cellular structure ; Elastic properties ; Homogenization ; Periodic structures ; Unit cell</subject><ispartof>Journal of strain analysis for engineering design, 2023-10, Vol.58 (7), p.590-602</ispartof><rights>IMechE 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43</citedby><cites>FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43</cites><orcidid>0000-0003-0520-8962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Imediegwu, Chikwesiri</creatorcontrib><creatorcontrib>Grimm, Uwe</creatorcontrib><creatorcontrib>Moat, Richard</creatorcontrib><creatorcontrib>Jowers, Iestyn</creatorcontrib><title>A computational method for determining the linear elastic properties of 2D aperiodic lattice structures</title><title>Journal of strain analysis for engineering design</title><description>This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.</description><subject>Aerospace engineering</subject><subject>Aerospace industry</subject><subject>Bioengineering</subject><subject>Boundary conditions</subject><subject>Cellular structure</subject><subject>Elastic properties</subject><subject>Homogenization</subject><subject>Periodic structures</subject><subject>Unit cell</subject><issn>0309-3247</issn><issn>2041-3130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9dQ857Es9QkFN7oeMslNmzIzGZPMwn9vSgUX4upyOd853HsQuqVkRWlV3RNOGs5ExRilkpRleYYWjAhacMrJOVoc9eIIXKKrGA-E0EoKtkC7NdZ-mOakkvOj6vEAae8Ntj5gAwnC4EY37nDaA-7dCCpg6FVMTuMp-AlCchCxt5g9YJVX502WepUyATimMOs0B4jX6MKqPsLNz1yij6fH981LsX17ft2st4XmUqaiNJaRxnJmG1JRVlra8UZZILqxDSUdNRRE0xlttVBC1nVZm0ry2nJpSKcFX6K7U26-7nOGmNqDn0N-LLasLqWoquzJFD1ROvgYA9h2Cm5Q4aulpD322f7pM3tWJ09UO_hN_d_wDYULdjI</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Imediegwu, Chikwesiri</creator><creator>Grimm, Uwe</creator><creator>Moat, Richard</creator><creator>Jowers, Iestyn</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0520-8962</orcidid></search><sort><creationdate>202310</creationdate><title>A computational method for determining the linear elastic properties of 2D aperiodic lattice structures</title><author>Imediegwu, Chikwesiri ; Grimm, Uwe ; Moat, Richard ; Jowers, Iestyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace engineering</topic><topic>Aerospace industry</topic><topic>Bioengineering</topic><topic>Boundary conditions</topic><topic>Cellular structure</topic><topic>Elastic properties</topic><topic>Homogenization</topic><topic>Periodic structures</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imediegwu, Chikwesiri</creatorcontrib><creatorcontrib>Grimm, Uwe</creatorcontrib><creatorcontrib>Moat, Richard</creatorcontrib><creatorcontrib>Jowers, Iestyn</creatorcontrib><collection>SAGE Open Access Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of strain analysis for engineering design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imediegwu, Chikwesiri</au><au>Grimm, Uwe</au><au>Moat, Richard</au><au>Jowers, Iestyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational method for determining the linear elastic properties of 2D aperiodic lattice structures</atitle><jtitle>Journal of strain analysis for engineering design</jtitle><date>2023-10</date><risdate>2023</risdate><volume>58</volume><issue>7</issue><spage>590</spage><epage>602</epage><pages>590-602</pages><issn>0309-3247</issn><eissn>2041-3130</eissn><abstract>This paper develops a framework for determining the linear elastic properties of non-periodic lattice structures. An element-based material assignment methodology is implemented that facilitates the generation and analyses of arbitrary patterns on a structured mesh. An adapted numerical homogenization strategy features the inclusion of a homogenized region in the neighbourhood of the domain boundary that validates the implementation of periodic boundary conditions for an arbitrary finite patch of a periodic or non-periodic lattice structure. To demonstrate the method, the linear elastic properties of an aperiodic lattice pattern based on the Penrose (P3) pattern is evaluated. Such a structure exhibits order without translational symmetry and consequently lacks a repeating unit cell. The isotropic performance of the aperiodic lattice structure is investigated and compared to that of the well-known square periodic lattice. The framework opens the door to the investigation and analyses of other novel cellular structures which are not based on a repeating unit cell. Additive manufacturing facilitates the physical realization of such lattice structures, presenting them as viable alternatives to conventional periodic structures in the aerospace and bio-engineering industries.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/03093247221150666</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0520-8962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-3247
ispartof Journal of strain analysis for engineering design, 2023-10, Vol.58 (7), p.590-602
issn 0309-3247
2041-3130
language eng
recordid cdi_proquest_journals_2865477886
source Sage Journals Online
subjects Aerospace engineering
Aerospace industry
Bioengineering
Boundary conditions
Cellular structure
Elastic properties
Homogenization
Periodic structures
Unit cell
title A computational method for determining the linear elastic properties of 2D aperiodic lattice structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20method%20for%20determining%20the%20linear%20elastic%20properties%20of%202D%20aperiodic%20lattice%20structures&rft.jtitle=Journal%20of%20strain%20analysis%20for%20engineering%20design&rft.au=Imediegwu,%20Chikwesiri&rft.date=2023-10&rft.volume=58&rft.issue=7&rft.spage=590&rft.epage=602&rft.pages=590-602&rft.issn=0309-3247&rft.eissn=2041-3130&rft_id=info:doi/10.1177/03093247221150666&rft_dat=%3Cproquest_cross%3E2865477886%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-6df209f32f907126f1b39afe0c9f910b1d1e49bdcfc4a458868d7538f35d0bc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865477886&rft_id=info:pmid/&rft_sage_id=10.1177_03093247221150666&rfr_iscdi=true