Loading…
Facial Kinship Verification from remote photoplethysmography
Facial Kinship Verification (FKV) aims at automatically determining whether two subjects have a kinship relation based on human faces. It has potential applications in finding missing children and social media analysis. Traditional FKV faces challenges as it is vulnerable to spoof attacks and raises...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Facial Kinship Verification (FKV) aims at automatically determining whether two subjects have a kinship relation based on human faces. It has potential applications in finding missing children and social media analysis. Traditional FKV faces challenges as it is vulnerable to spoof attacks and raises privacy issues. In this paper, we explore for the first time the FKV with vital bio-signals, focusing on remote Photoplethysmography (rPPG). rPPG signals are extracted from facial videos, resulting in a one-dimensional signal that measures the changes in visible light reflection emitted to and detected from the skin caused by the heartbeat. Specifically, in this paper, we employed a straightforward one-dimensional Convolutional Neural Network (1DCNN) with a 1DCNN-Attention module and kinship contrastive loss to learn the kin similarity from rPPGs. The network takes multiple rPPG signals extracted from various facial Regions of Interest (ROIs) as inputs. Additionally, the 1DCNN attention module is designed to learn and capture the discriminative kin features from feature embeddings. Finally, we demonstrate the feasibility of rPPG to detect kinship with the experiment evaluation on the UvANEMO Smile Database from different kin relations. |
---|---|
ISSN: | 2331-8422 |