Loading…
Real-time robust tracking control for a quadrotor using monocular vision
In this paper, the autonomous trajectory-tracking problem for an Unmanned Aerial Vehicle (UAV) based on Sliding Mode Control (SMC) algorithms is treated. The control system is implemented in real-time to stabilize a commercial AR.Drone 2.0 quadrotor using monocular vision. The under-actuated mathema...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2023-09, Vol.237 (12), p.2729-2741 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the autonomous trajectory-tracking problem for an Unmanned Aerial Vehicle (UAV) based on Sliding Mode Control (SMC) algorithms is treated. The control system is implemented in real-time to stabilize a commercial AR.Drone 2.0 quadrotor using monocular vision. The under-actuated mathematical model is based on the Newton-Euler formulation. The algorithm allows the stabilization of the quadrotor in all its states under the simultaneous effect of parametric uncertainties and constant external disturbances. The vision algorithm uses a monocular camera to estimate the vehicle’s position. The experimental test results and numerical simulations show the effectiveness and robustness of the proposed controller. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/09544100231158265 |