Loading…

An Efficient Scheduling Strategy for Collaborative Cloud and Edge Computing in System of Intelligent Buildings

Edge computing is a new computing method, and task scheduling is challenging work. Using edge computing in intelligent buildings for managing smart home devices has gained popularity because it can reduce the delay and network congestion brought by cloud computing. Edge computing has the advantage o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics 2023-09, Vol.27 (5), p.948-958
Main Authors: Feng, Xiaodong, Yi, Lingzhi, Liu, Ning, Gao, Xieyi, Liu, Weiwei, Wang, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Edge computing is a new computing method, and task scheduling is challenging work. Using edge computing in intelligent buildings for managing smart home devices has gained popularity because it can reduce the delay and network congestion brought by cloud computing. Edge computing has the advantage of fast response speeds, but its computing capacity is limited. To solve this practical problem, a system framework of collaborative cloud and edge computing is constructed for intelligent buildings. First, the communication time, task completion time, and CPU energy consumption are considered comprehensively, and a mathematical model of the system is developed. Considering the compute-intensity task, the splitting ratio is determined for tasks to achieve the collaboration of cloud computing and edge computing. Then, the search mechanism of a single gene mutation in the genetic algorithm (GA) is introduced to compensate for the defects of the salp swarm algorithm (SSA), while focusing on the search ability and optimization efficiency. Finally, the proposed strategy is theoretically analyzed and experimentally evaluated. The simulation results show that the hybrid algorithm of SSA-GA has better performance than other algorithms, and the proposed collaborative cloud and edge computing task scheduling strategy demonstrated a lower delay and makespan.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2023.p0948