Loading…

Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor

Wall thermal boundary conditions and turbulent models can affect flow and combustion simulations but are seldom considered in the turbulent modeling of supersonic combustors. This work investigated the effect of thermal boundary conditions and four turbulent models on turbulent combustion in a cavit...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-09, Vol.35 (9)
Main Authors: Sun, Yujia, Zheng, Shu, Jiang, Lin, Wang, Shunyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3
cites cdi_FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Sun, Yujia
Zheng, Shu
Jiang, Lin
Wang, Shunyao
description Wall thermal boundary conditions and turbulent models can affect flow and combustion simulations but are seldom considered in the turbulent modeling of supersonic combustors. This work investigated the effect of thermal boundary conditions and four turbulent models on turbulent combustion in a cavity-stabilized scramjet combustor. Results showed that the thermal boundary condition had a noticeable influence on the temperature fields. Changing the thermal boundary condition from zero gradient to a fixed lower temperature considerably reduced the maximum temperature but did not affect the temperature distribution. The fixed temperature boundary condition generated a slightly larger reaction heat release near the upper region of the cavity. However, the mass fraction of carbon dioxide was low for a fixed low temperature. The pressure increased near the rear of the cavity but decreased elsewhere at a fixed temperature. Reynolds-averaged models (k-epsilon, k-omega, and realizable k-epsilon) tend to over-predict the temperature and turbulent kinetic energy but under-predict the mass fraction of carbon dioxide. The detached Eddy simulation also under-predicts carbon dioxide but predicts a more accurate temperature.
doi_str_mv 10.1063/5.0169466
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866156519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866156519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk7RJm6MsfsGCFz2XNJmwXdpmzcdhwR9v9sOrl5lheN53mBehW0oWlIjykS8IFbIS4gzNKGlkUQshzvdzTQohSnqJrkLYEEJKycQM_TxbCzpiZ3Fcgx_VgDuXJqP8Dms3mT72bsJqMjgm36UBpohHZ2AIOO-zJFNjl8IBC_2YBnUYsx_E9S7zUNgEAxgctFfjBuKfwvlrdGHVEODm1Ofo6-X5c_lWrD5e35dPq0IzyWKhm04RzYy0HehK19aUppO5Sq50BYw1WlHeSdmAoDUwza01jaRlpUEZpso5ujv6br37ThBiu3HJT_lkyxohKBecykzdHyntXQgebLv1_ZiDaClp9-G2vD2Fm9mHIxt0Hw8f_wP_AgHSfYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866156519</pqid></control><display><type>article</type><title>Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Sun, Yujia ; Zheng, Shu ; Jiang, Lin ; Wang, Shunyao</creator><creatorcontrib>Sun, Yujia ; Zheng, Shu ; Jiang, Lin ; Wang, Shunyao</creatorcontrib><description>Wall thermal boundary conditions and turbulent models can affect flow and combustion simulations but are seldom considered in the turbulent modeling of supersonic combustors. This work investigated the effect of thermal boundary conditions and four turbulent models on turbulent combustion in a cavity-stabilized scramjet combustor. Results showed that the thermal boundary condition had a noticeable influence on the temperature fields. Changing the thermal boundary condition from zero gradient to a fixed lower temperature considerably reduced the maximum temperature but did not affect the temperature distribution. The fixed temperature boundary condition generated a slightly larger reaction heat release near the upper region of the cavity. However, the mass fraction of carbon dioxide was low for a fixed low temperature. The pressure increased near the rear of the cavity but decreased elsewhere at a fixed temperature. Reynolds-averaged models (k-epsilon, k-omega, and realizable k-epsilon) tend to over-predict the temperature and turbulent kinetic energy but under-predict the mass fraction of carbon dioxide. The detached Eddy simulation also under-predicts carbon dioxide but predicts a more accurate temperature.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0169466</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Carbon dioxide ; Combustion chambers ; Detached eddy simulation ; Fluid dynamics ; Kinetic energy ; Low temperature ; Physics ; Supersonic combustion ramjet engines ; Temperature distribution ; Turbulent combustion ; Turbulent flow</subject><ispartof>Physics of fluids (1994), 2023-09, Vol.35 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3</citedby><cites>FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3</cites><orcidid>0000-0003-4347-5498 ; 0000-0003-0463-3350 ; 0000-0002-6107-8931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Zheng, Shu</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Wang, Shunyao</creatorcontrib><title>Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor</title><title>Physics of fluids (1994)</title><description>Wall thermal boundary conditions and turbulent models can affect flow and combustion simulations but are seldom considered in the turbulent modeling of supersonic combustors. This work investigated the effect of thermal boundary conditions and four turbulent models on turbulent combustion in a cavity-stabilized scramjet combustor. Results showed that the thermal boundary condition had a noticeable influence on the temperature fields. Changing the thermal boundary condition from zero gradient to a fixed lower temperature considerably reduced the maximum temperature but did not affect the temperature distribution. The fixed temperature boundary condition generated a slightly larger reaction heat release near the upper region of the cavity. However, the mass fraction of carbon dioxide was low for a fixed low temperature. The pressure increased near the rear of the cavity but decreased elsewhere at a fixed temperature. Reynolds-averaged models (k-epsilon, k-omega, and realizable k-epsilon) tend to over-predict the temperature and turbulent kinetic energy but under-predict the mass fraction of carbon dioxide. The detached Eddy simulation also under-predicts carbon dioxide but predicts a more accurate temperature.</description><subject>Boundary conditions</subject><subject>Carbon dioxide</subject><subject>Combustion chambers</subject><subject>Detached eddy simulation</subject><subject>Fluid dynamics</subject><subject>Kinetic energy</subject><subject>Low temperature</subject><subject>Physics</subject><subject>Supersonic combustion ramjet engines</subject><subject>Temperature distribution</subject><subject>Turbulent combustion</subject><subject>Turbulent flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcBTwpdk7RJm6MsfsGCFz2XNJmwXdpmzcdhwR9v9sOrl5lheN53mBehW0oWlIjykS8IFbIS4gzNKGlkUQshzvdzTQohSnqJrkLYEEJKycQM_TxbCzpiZ3Fcgx_VgDuXJqP8Dms3mT72bsJqMjgm36UBpohHZ2AIOO-zJFNjl8IBC_2YBnUYsx_E9S7zUNgEAxgctFfjBuKfwvlrdGHVEODm1Ofo6-X5c_lWrD5e35dPq0IzyWKhm04RzYy0HehK19aUppO5Sq50BYw1WlHeSdmAoDUwza01jaRlpUEZpso5ujv6br37ThBiu3HJT_lkyxohKBecykzdHyntXQgebLv1_ZiDaClp9-G2vD2Fm9mHIxt0Hw8f_wP_AgHSfYg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Sun, Yujia</creator><creator>Zheng, Shu</creator><creator>Jiang, Lin</creator><creator>Wang, Shunyao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4347-5498</orcidid><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid><orcidid>https://orcid.org/0000-0002-6107-8931</orcidid></search><sort><creationdate>202309</creationdate><title>Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor</title><author>Sun, Yujia ; Zheng, Shu ; Jiang, Lin ; Wang, Shunyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Carbon dioxide</topic><topic>Combustion chambers</topic><topic>Detached eddy simulation</topic><topic>Fluid dynamics</topic><topic>Kinetic energy</topic><topic>Low temperature</topic><topic>Physics</topic><topic>Supersonic combustion ramjet engines</topic><topic>Temperature distribution</topic><topic>Turbulent combustion</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Zheng, Shu</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Wang, Shunyao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yujia</au><au>Zheng, Shu</au><au>Jiang, Lin</au><au>Wang, Shunyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Wall thermal boundary conditions and turbulent models can affect flow and combustion simulations but are seldom considered in the turbulent modeling of supersonic combustors. This work investigated the effect of thermal boundary conditions and four turbulent models on turbulent combustion in a cavity-stabilized scramjet combustor. Results showed that the thermal boundary condition had a noticeable influence on the temperature fields. Changing the thermal boundary condition from zero gradient to a fixed lower temperature considerably reduced the maximum temperature but did not affect the temperature distribution. The fixed temperature boundary condition generated a slightly larger reaction heat release near the upper region of the cavity. However, the mass fraction of carbon dioxide was low for a fixed low temperature. The pressure increased near the rear of the cavity but decreased elsewhere at a fixed temperature. Reynolds-averaged models (k-epsilon, k-omega, and realizable k-epsilon) tend to over-predict the temperature and turbulent kinetic energy but under-predict the mass fraction of carbon dioxide. The detached Eddy simulation also under-predicts carbon dioxide but predicts a more accurate temperature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0169466</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4347-5498</orcidid><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid><orcidid>https://orcid.org/0000-0002-6107-8931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-09, Vol.35 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2866156519
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Boundary conditions
Carbon dioxide
Combustion chambers
Detached eddy simulation
Fluid dynamics
Kinetic energy
Low temperature
Physics
Supersonic combustion ramjet engines
Temperature distribution
Turbulent combustion
Turbulent flow
title Effect of thermal boundary condition and turbulent models on the combustion simulation of ethylene-fueled scramjet combustor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20boundary%20condition%20and%20turbulent%20models%20on%20the%20combustion%20simulation%20of%20ethylene-fueled%20scramjet%20combustor&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sun,%20Yujia&rft.date=2023-09&rft.volume=35&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0169466&rft_dat=%3Cproquest_cross%3E2866156519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-c8ba0c2d9fbec4c7fd3db9fd395ac4e228ca15b998e617e2c5ffd89134cead2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866156519&rft_id=info:pmid/&rfr_iscdi=true