Loading…
Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer
Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through the...
Saved in:
Published in: | Applied physics letters 2023-09, Vol.123 (12) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 123 |
creator | Wang, Yiyue Zheng, Cuixiu Zhang, Dalin Chen, Hao-Hsuan Liu, Yaowen |
description | Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques. |
doi_str_mv | 10.1063/5.0165962 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2866494171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866494171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKsL_yDgSmFq3jNZaqkPKLjRdUhnkjZ1mtQkRebvTR9rN7nk3sN9HABuMZpgJOgjnyAsuBTkDIwwquuKYtycgxFCiFZCcnwJrlJaly8nlI7A-tl5HQdoo_nZGd8OMK2czfDbDM4v4SZ0u15nFzx0HqZteXKIhYQhta4vpRAT_HV5BdPg88pk10Lts7MmxrDRS3_I9How8RpcWN0nc3OKY_D1MvucvlXzj9f36dO8aokkuWoYJowgxpq65sxoRPjCYM6llZR0Ulrd1F1HW11LYQQlC247xhuumekawTEdg7tj320MZdOU1Trsoi8jFWmEYJLhek_dH6k2hpSisWob3aaoUBipvUrF1UllYR-ObLk5H2z8A_8B2Tt0nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866494171</pqid></control><display><type>article</type><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</creator><creatorcontrib>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</creatorcontrib><description>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0165962</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Applied physics ; Controllability ; Electric fields ; Frequency shift keying ; Magnetization ; Modulation ; Numerical analysis ; Orbits ; Oscillators ; Precession ; Torque</subject><ispartof>Applied physics letters, 2023-09, Vol.123 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</citedby><cites>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</cites><orcidid>0000-0001-8591-4466 ; 0009-0007-9617-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0165962$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Wang, Yiyue</creatorcontrib><creatorcontrib>Zheng, Cuixiu</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Chen, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Yaowen</creatorcontrib><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><title>Applied physics letters</title><description>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>Frequency shift keying</subject><subject>Magnetization</subject><subject>Modulation</subject><subject>Numerical analysis</subject><subject>Orbits</subject><subject>Oscillators</subject><subject>Precession</subject><subject>Torque</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKsL_yDgSmFq3jNZaqkPKLjRdUhnkjZ1mtQkRebvTR9rN7nk3sN9HABuMZpgJOgjnyAsuBTkDIwwquuKYtycgxFCiFZCcnwJrlJaly8nlI7A-tl5HQdoo_nZGd8OMK2czfDbDM4v4SZ0u15nFzx0HqZteXKIhYQhta4vpRAT_HV5BdPg88pk10Lts7MmxrDRS3_I9How8RpcWN0nc3OKY_D1MvucvlXzj9f36dO8aokkuWoYJowgxpq65sxoRPjCYM6llZR0Ulrd1F1HW11LYQQlC247xhuumekawTEdg7tj320MZdOU1Trsoi8jFWmEYJLhek_dH6k2hpSisWob3aaoUBipvUrF1UllYR-ObLk5H2z8A_8B2Tt0nw</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Wang, Yiyue</creator><creator>Zheng, Cuixiu</creator><creator>Zhang, Dalin</creator><creator>Chen, Hao-Hsuan</creator><creator>Liu, Yaowen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8591-4466</orcidid><orcidid>https://orcid.org/0009-0007-9617-7773</orcidid></search><sort><creationdate>20230918</creationdate><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><author>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>Frequency shift keying</topic><topic>Magnetization</topic><topic>Modulation</topic><topic>Numerical analysis</topic><topic>Orbits</topic><topic>Oscillators</topic><topic>Precession</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiyue</creatorcontrib><creatorcontrib>Zheng, Cuixiu</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Chen, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Yaowen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiyue</au><au>Zheng, Cuixiu</au><au>Zhang, Dalin</au><au>Chen, Hao-Hsuan</au><au>Liu, Yaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</atitle><jtitle>Applied physics letters</jtitle><date>2023-09-18</date><risdate>2023</risdate><volume>123</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165962</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8591-4466</orcidid><orcidid>https://orcid.org/0009-0007-9617-7773</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2023-09, Vol.123 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2866494171 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Antiferromagnetism Applied physics Controllability Electric fields Frequency shift keying Magnetization Modulation Numerical analysis Orbits Oscillators Precession Torque |
title | Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20frequency%20shift%20keying%20modulation%20in%20spin%20torque%20oscillators%20with%20synthetic%20antiferromagnetic%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Yiyue&rft.date=2023-09-18&rft.volume=123&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0165962&rft_dat=%3Cproquest_scita%3E2866494171%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866494171&rft_id=info:pmid/&rfr_iscdi=true |