Loading…

Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer

Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2023-09, Vol.123 (12)
Main Authors: Wang, Yiyue, Zheng, Cuixiu, Zhang, Dalin, Chen, Hao-Hsuan, Liu, Yaowen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513
cites cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 123
creator Wang, Yiyue
Zheng, Cuixiu
Zhang, Dalin
Chen, Hao-Hsuan
Liu, Yaowen
description Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.
doi_str_mv 10.1063/5.0165962
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2866494171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866494171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWKsL_yDgSmFq3jNZaqkPKLjRdUhnkjZ1mtQkRebvTR9rN7nk3sN9HABuMZpgJOgjnyAsuBTkDIwwquuKYtycgxFCiFZCcnwJrlJaly8nlI7A-tl5HQdoo_nZGd8OMK2czfDbDM4v4SZ0u15nFzx0HqZteXKIhYQhta4vpRAT_HV5BdPg88pk10Lts7MmxrDRS3_I9How8RpcWN0nc3OKY_D1MvucvlXzj9f36dO8aokkuWoYJowgxpq65sxoRPjCYM6llZR0Ulrd1F1HW11LYQQlC247xhuumekawTEdg7tj320MZdOU1Trsoi8jFWmEYJLhek_dH6k2hpSisWob3aaoUBipvUrF1UllYR-ObLk5H2z8A_8B2Tt0nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866494171</pqid></control><display><type>article</type><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</creator><creatorcontrib>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</creatorcontrib><description>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0165962</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Applied physics ; Controllability ; Electric fields ; Frequency shift keying ; Magnetization ; Modulation ; Numerical analysis ; Orbits ; Oscillators ; Precession ; Torque</subject><ispartof>Applied physics letters, 2023-09, Vol.123 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</citedby><cites>FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</cites><orcidid>0000-0001-8591-4466 ; 0009-0007-9617-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0165962$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Wang, Yiyue</creatorcontrib><creatorcontrib>Zheng, Cuixiu</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Chen, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Yaowen</creatorcontrib><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><title>Applied physics letters</title><description>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>Frequency shift keying</subject><subject>Magnetization</subject><subject>Modulation</subject><subject>Numerical analysis</subject><subject>Orbits</subject><subject>Oscillators</subject><subject>Precession</subject><subject>Torque</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUQIMoWKsL_yDgSmFq3jNZaqkPKLjRdUhnkjZ1mtQkRebvTR9rN7nk3sN9HABuMZpgJOgjnyAsuBTkDIwwquuKYtycgxFCiFZCcnwJrlJaly8nlI7A-tl5HQdoo_nZGd8OMK2czfDbDM4v4SZ0u15nFzx0HqZteXKIhYQhta4vpRAT_HV5BdPg88pk10Lts7MmxrDRS3_I9How8RpcWN0nc3OKY_D1MvucvlXzj9f36dO8aokkuWoYJowgxpq65sxoRPjCYM6llZR0Ulrd1F1HW11LYQQlC247xhuumekawTEdg7tj320MZdOU1Trsoi8jFWmEYJLhek_dH6k2hpSisWob3aaoUBipvUrF1UllYR-ObLk5H2z8A_8B2Tt0nw</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Wang, Yiyue</creator><creator>Zheng, Cuixiu</creator><creator>Zhang, Dalin</creator><creator>Chen, Hao-Hsuan</creator><creator>Liu, Yaowen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8591-4466</orcidid><orcidid>https://orcid.org/0009-0007-9617-7773</orcidid></search><sort><creationdate>20230918</creationdate><title>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</title><author>Wang, Yiyue ; Zheng, Cuixiu ; Zhang, Dalin ; Chen, Hao-Hsuan ; Liu, Yaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>Frequency shift keying</topic><topic>Magnetization</topic><topic>Modulation</topic><topic>Numerical analysis</topic><topic>Orbits</topic><topic>Oscillators</topic><topic>Precession</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiyue</creatorcontrib><creatorcontrib>Zheng, Cuixiu</creatorcontrib><creatorcontrib>Zhang, Dalin</creatorcontrib><creatorcontrib>Chen, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Yaowen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiyue</au><au>Zheng, Cuixiu</au><au>Zhang, Dalin</au><au>Chen, Hao-Hsuan</au><au>Liu, Yaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer</atitle><jtitle>Applied physics letters</jtitle><date>2023-09-18</date><risdate>2023</risdate><volume>123</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Antiferromagnets exhibit ultrafast magnetization precession, which has the potential to enable the development of terahertz spin torque nano-oscillators. By utilizing perpendicularly magnetized magnetic nanopillars with a synthetic antiferromagnetic (SAF) free layer, we have demonstrated through theoretical and numerical analysis that stable out-of-plane precession states can be achieved by applying current and an electric field. In the case of small current, the two magnetic layers of the SAF are in antiparallel alignment and rotate around the z-axis with the precession frequency decreasing as the current strength increases. When the current-induced spin torque is strong enough to fully overcome the antiferromagnetic coupling, the SAF free layer is driven into a scissor-like precession state around the z-axis with the frequency increasing with current. By selecting the appropriate combination of the current and electric field, the magnetization precession orbits and precession frequencies can be adjusted. These controllable procession orbits with tunable frequencies and fixed magnetization precession amplitude may be a promising candidate for implementing binary frequency shift keying modulation techniques.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165962</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8591-4466</orcidid><orcidid>https://orcid.org/0009-0007-9617-7773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-09, Vol.123 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2866494171
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Antiferromagnetism
Applied physics
Controllability
Electric fields
Frequency shift keying
Magnetization
Modulation
Numerical analysis
Orbits
Oscillators
Precession
Torque
title Binary frequency shift keying modulation in spin torque oscillators with synthetic antiferromagnetic layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20frequency%20shift%20keying%20modulation%20in%20spin%20torque%20oscillators%20with%20synthetic%20antiferromagnetic%20layer&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Yiyue&rft.date=2023-09-18&rft.volume=123&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0165962&rft_dat=%3Cproquest_scita%3E2866494171%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-84124204487754ea025be1559f932d99fa87dd3ca796e632b5fd4585a4ed86513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866494171&rft_id=info:pmid/&rfr_iscdi=true