Loading…

Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications

Membrane distillation (MD), a temperature‐driven membrane separation process, is used for various applications due to its less complicated design. MD operations encounter major issues such as permeate flux decrease, membrane fouling, and wetting. A lot of research has been conducted in the past year...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology 2023-10, Vol.46 (10), p.1982-2006
Main Authors: Sawant, Shubham Rahul, Kalla, Sarita, Murthy, Z. V. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3
cites cdi_FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3
container_end_page 2006
container_issue 10
container_start_page 1982
container_title Chemical engineering & technology
container_volume 46
creator Sawant, Shubham Rahul
Kalla, Sarita
Murthy, Z. V. P.
description Membrane distillation (MD), a temperature‐driven membrane separation process, is used for various applications due to its less complicated design. MD operations encounter major issues such as permeate flux decrease, membrane fouling, and wetting. A lot of research has been conducted in the past years on the modification of MD membranes by incorporating nanomaterials to overcome these obstacles and considerably increase their performance. Nanomaterials incorporated into the membranes improve the water permeability, mechanical strength, and fouling. The incorporation of next‐generation nanomaterials like metal oxide nanoparticles, carbon‐based nanomaterials, graphene‐based membranes, quantum dots, and metal‐organic frameworks in the MD membranes is investigated. Essential membrane properties for MD operations are comprehensively studied, including higher liquid entry pressure, permeability, porosity, hydrophobicity, thermal stability, mean pore size, and low fouling rate. Significant advances in the application of nanomaterials to the modification of MD membranes as well as other membrane fabrication techniques adopted for the incorporation of nanoparticles like surface grafting, interfacial polymerization, plasma polymerization, and dip coating are reviewed. Important future aspects are discussed.
doi_str_mv 10.1002/ceat.202300054
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866555405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866555405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgNuTb3zl6TuSrVaqLrpPtzcTGhKmokzqeDOR_AZfRIntHR1ued894fD2C2HCQcQD2SwnwgQEgC0OmMjrgWPFRf6nI1gKiFONU8u2ZX324Dw0IzY1zu2doe9cTU2fz-_y5as66wLShm9mV3hsDXRU-37ummwr217Uv1jNN-gQxqGg0_-Plpg4Wo6cGtDm7b-3JugY1tGs65rjp6_ZhcVNt7cHOuYrRfP6_lrvPp4Wc5nq5hEkvaxMqqUcprJTEsqRCZBElLJqaoKI1BAqQSlItMpJFOFGoyhLNGGwmAljRyzu8PaztnhkT7f2r1rw8VcZEmitVagAzU5UOSs985UeefqHbrvnEM-RJsP0eanaOU_QSRv2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866555405</pqid></control><display><type>article</type><title>Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications</title><source>Wiley</source><creator>Sawant, Shubham Rahul ; Kalla, Sarita ; Murthy, Z. V. P.</creator><creatorcontrib>Sawant, Shubham Rahul ; Kalla, Sarita ; Murthy, Z. V. P.</creatorcontrib><description>Membrane distillation (MD), a temperature‐driven membrane separation process, is used for various applications due to its less complicated design. MD operations encounter major issues such as permeate flux decrease, membrane fouling, and wetting. A lot of research has been conducted in the past years on the modification of MD membranes by incorporating nanomaterials to overcome these obstacles and considerably increase their performance. Nanomaterials incorporated into the membranes improve the water permeability, mechanical strength, and fouling. The incorporation of next‐generation nanomaterials like metal oxide nanoparticles, carbon‐based nanomaterials, graphene‐based membranes, quantum dots, and metal‐organic frameworks in the MD membranes is investigated. Essential membrane properties for MD operations are comprehensively studied, including higher liquid entry pressure, permeability, porosity, hydrophobicity, thermal stability, mean pore size, and low fouling rate. Significant advances in the application of nanomaterials to the modification of MD membranes as well as other membrane fabrication techniques adopted for the incorporation of nanoparticles like surface grafting, interfacial polymerization, plasma polymerization, and dip coating are reviewed. Important future aspects are discussed.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202300054</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Distillation ; Fouling ; Graphene ; Hydrophobicity ; Immersion coating ; Membrane separation ; Membranes ; Metal oxides ; Nanomaterials ; Nanoparticles ; Permeability ; Polymerization ; Pore size ; Porosity ; Quantum dots ; Thermal stability</subject><ispartof>Chemical engineering &amp; technology, 2023-10, Vol.46 (10), p.1982-2006</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3</citedby><cites>FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sawant, Shubham Rahul</creatorcontrib><creatorcontrib>Kalla, Sarita</creatorcontrib><creatorcontrib>Murthy, Z. V. P.</creatorcontrib><title>Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications</title><title>Chemical engineering &amp; technology</title><description>Membrane distillation (MD), a temperature‐driven membrane separation process, is used for various applications due to its less complicated design. MD operations encounter major issues such as permeate flux decrease, membrane fouling, and wetting. A lot of research has been conducted in the past years on the modification of MD membranes by incorporating nanomaterials to overcome these obstacles and considerably increase their performance. Nanomaterials incorporated into the membranes improve the water permeability, mechanical strength, and fouling. The incorporation of next‐generation nanomaterials like metal oxide nanoparticles, carbon‐based nanomaterials, graphene‐based membranes, quantum dots, and metal‐organic frameworks in the MD membranes is investigated. Essential membrane properties for MD operations are comprehensively studied, including higher liquid entry pressure, permeability, porosity, hydrophobicity, thermal stability, mean pore size, and low fouling rate. Significant advances in the application of nanomaterials to the modification of MD membranes as well as other membrane fabrication techniques adopted for the incorporation of nanoparticles like surface grafting, interfacial polymerization, plasma polymerization, and dip coating are reviewed. Important future aspects are discussed.</description><subject>Distillation</subject><subject>Fouling</subject><subject>Graphene</subject><subject>Hydrophobicity</subject><subject>Immersion coating</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Metal oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Permeability</subject><subject>Polymerization</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Quantum dots</subject><subject>Thermal stability</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rgNuTb3zl6TuSrVaqLrpPtzcTGhKmokzqeDOR_AZfRIntHR1ued894fD2C2HCQcQD2SwnwgQEgC0OmMjrgWPFRf6nI1gKiFONU8u2ZX324Dw0IzY1zu2doe9cTU2fz-_y5as66wLShm9mV3hsDXRU-37ummwr217Uv1jNN-gQxqGg0_-Plpg4Wo6cGtDm7b-3JugY1tGs65rjp6_ZhcVNt7cHOuYrRfP6_lrvPp4Wc5nq5hEkvaxMqqUcprJTEsqRCZBElLJqaoKI1BAqQSlItMpJFOFGoyhLNGGwmAljRyzu8PaztnhkT7f2r1rw8VcZEmitVagAzU5UOSs985UeefqHbrvnEM-RJsP0eanaOU_QSRv2w</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Sawant, Shubham Rahul</creator><creator>Kalla, Sarita</creator><creator>Murthy, Z. V. P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202310</creationdate><title>Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications</title><author>Sawant, Shubham Rahul ; Kalla, Sarita ; Murthy, Z. V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Distillation</topic><topic>Fouling</topic><topic>Graphene</topic><topic>Hydrophobicity</topic><topic>Immersion coating</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Metal oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Permeability</topic><topic>Polymerization</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Quantum dots</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawant, Shubham Rahul</creatorcontrib><creatorcontrib>Kalla, Sarita</creatorcontrib><creatorcontrib>Murthy, Z. V. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawant, Shubham Rahul</au><au>Kalla, Sarita</au><au>Murthy, Z. V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2023-10</date><risdate>2023</risdate><volume>46</volume><issue>10</issue><spage>1982</spage><epage>2006</epage><pages>1982-2006</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Membrane distillation (MD), a temperature‐driven membrane separation process, is used for various applications due to its less complicated design. MD operations encounter major issues such as permeate flux decrease, membrane fouling, and wetting. A lot of research has been conducted in the past years on the modification of MD membranes by incorporating nanomaterials to overcome these obstacles and considerably increase their performance. Nanomaterials incorporated into the membranes improve the water permeability, mechanical strength, and fouling. The incorporation of next‐generation nanomaterials like metal oxide nanoparticles, carbon‐based nanomaterials, graphene‐based membranes, quantum dots, and metal‐organic frameworks in the MD membranes is investigated. Essential membrane properties for MD operations are comprehensively studied, including higher liquid entry pressure, permeability, porosity, hydrophobicity, thermal stability, mean pore size, and low fouling rate. Significant advances in the application of nanomaterials to the modification of MD membranes as well as other membrane fabrication techniques adopted for the incorporation of nanoparticles like surface grafting, interfacial polymerization, plasma polymerization, and dip coating are reviewed. Important future aspects are discussed.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202300054</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2023-10, Vol.46 (10), p.1982-2006
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_2866555405
source Wiley
subjects Distillation
Fouling
Graphene
Hydrophobicity
Immersion coating
Membrane separation
Membranes
Metal oxides
Nanomaterials
Nanoparticles
Permeability
Polymerization
Pore size
Porosity
Quantum dots
Thermal stability
title Nanomaterial‐Incorporated Membrane Distillation Membranes: Characteristics, Fabrication Techniques, and Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomaterial%E2%80%90Incorporated%20Membrane%20Distillation%20Membranes:%20Characteristics,%20Fabrication%20Techniques,%20and%20Applications&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Sawant,%20Shubham%20Rahul&rft.date=2023-10&rft.volume=46&rft.issue=10&rft.spage=1982&rft.epage=2006&rft.pages=1982-2006&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202300054&rft_dat=%3Cproquest_cross%3E2866555405%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-4e4d33983853cb28303cacd1cffbe2a20d42c728570694a50eec865ec4e4f3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866555405&rft_id=info:pmid/&rfr_iscdi=true