Loading…
The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian
We study the higher integrability of solutions to the Zaremba problem for the p(∙)-Laplacian in a plane domain with Lipschitz boundary. We prove that the Boyarsky–Meyers estimates for solutions are valid under a special ratio between the parts of the Dirichlet and Neumann conditions on the boundary....
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-08, Vol.274 (4), p.423-440 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c368x-2e9ca3460f46e243029dbc158f27b0a9511e66f5c58a2c43d7a9e2164186f1053 |
container_end_page | 440 |
container_issue | 4 |
container_start_page | 423 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 274 |
creator | Alkhutov, Yu. A. Chechkin, G. A. |
description | We study the higher integrability of solutions to the Zaremba problem for the p(∙)-Laplacian in a plane domain with Lipschitz boundary. We prove that the Boyarsky–Meyers estimates for solutions are valid under a special ratio between the parts of the Dirichlet and Neumann conditions on the boundary. |
doi_str_mv | 10.1007/s10958-023-06611-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2866804338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A768322956</galeid><sourcerecordid>A768322956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368x-2e9ca3460f46e243029dbc158f27b0a9511e66f5c58a2c43d7a9e2164186f1053</originalsourceid><addsrcrecordid>eNp9kctOGzEUhkdVkaDAC7AaqZtmYfBl7PEsU0TbSEEgLhs21olznE46l8SeSJkdS_Zd9fV4khqChCJFyAtbR9_no3P-JDlh9JRRmp8FRgupCeWCUKUYI-tPyQGTuSA6L-Tn-KY5J0Lk2X7yJYQ5jZLS4iC5vPuN6fe2Bx_-9M-Pfy-xRx_SUYPLFVRl16eu9WkXoQfwWE8gvfbtpML6tb749vz0b0DGsKjAltAcJXsOqoDHb_dhcv_j4u78Fxlf_RydD8fECqXXhGNhQWSKukwhzwTlxXRimdSO5xMKhWQMlXLSSg3cZmKaQ4GcqYxp5RiV4jD5uvl34dvlCkNn5u3KN7Gl4VopTTMh9Ds1gwpN2bi282DrMlgzfJme80KqSJEd1Awb9FC1Dboylrf40x18PFOsS7tTGGwJkelw3c1gFYIZ3d5ss3zDWt-G4NGZhS9r8L1h1LwkbTZJm5i0eU3arKMkNlKIcDND_76ND6z_5uipig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866804338</pqid></control><display><type>article</type><title>The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian</title><source>Springer Nature</source><creator>Alkhutov, Yu. A. ; Chechkin, G. A.</creator><creatorcontrib>Alkhutov, Yu. A. ; Chechkin, G. A.</creatorcontrib><description>We study the higher integrability of solutions to the Zaremba problem for the p(∙)-Laplacian in a plane domain with Lipschitz boundary. We prove that the Boyarsky–Meyers estimates for solutions are valid under a special ratio between the parts of the Dirichlet and Neumann conditions on the boundary.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-023-06611-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Dirichlet problem ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2023-08, Vol.274 (4), p.423-440</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c368x-2e9ca3460f46e243029dbc158f27b0a9511e66f5c58a2c43d7a9e2164186f1053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alkhutov, Yu. A.</creatorcontrib><creatorcontrib>Chechkin, G. A.</creatorcontrib><title>The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the higher integrability of solutions to the Zaremba problem for the p(∙)-Laplacian in a plane domain with Lipschitz boundary. We prove that the Boyarsky–Meyers estimates for solutions are valid under a special ratio between the parts of the Dirichlet and Neumann conditions on the boundary.</description><subject>Dirichlet problem</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctOGzEUhkdVkaDAC7AaqZtmYfBl7PEsU0TbSEEgLhs21olznE46l8SeSJkdS_Zd9fV4khqChCJFyAtbR9_no3P-JDlh9JRRmp8FRgupCeWCUKUYI-tPyQGTuSA6L-Tn-KY5J0Lk2X7yJYQ5jZLS4iC5vPuN6fe2Bx_-9M-Pfy-xRx_SUYPLFVRl16eu9WkXoQfwWE8gvfbtpML6tb749vz0b0DGsKjAltAcJXsOqoDHb_dhcv_j4u78Fxlf_RydD8fECqXXhGNhQWSKukwhzwTlxXRimdSO5xMKhWQMlXLSSg3cZmKaQ4GcqYxp5RiV4jD5uvl34dvlCkNn5u3KN7Gl4VopTTMh9Ds1gwpN2bi282DrMlgzfJme80KqSJEd1Awb9FC1Dboylrf40x18PFOsS7tTGGwJkelw3c1gFYIZ3d5ss3zDWt-G4NGZhS9r8L1h1LwkbTZJm5i0eU3arKMkNlKIcDND_76ND6z_5uipig</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Alkhutov, Yu. A.</creator><creator>Chechkin, G. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230804</creationdate><title>The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian</title><author>Alkhutov, Yu. A. ; Chechkin, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368x-2e9ca3460f46e243029dbc158f27b0a9511e66f5c58a2c43d7a9e2164186f1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dirichlet problem</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkhutov, Yu. A.</creatorcontrib><creatorcontrib>Chechkin, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkhutov, Yu. A.</au><au>Chechkin, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2023-08-04</date><risdate>2023</risdate><volume>274</volume><issue>4</issue><spage>423</spage><epage>440</epage><pages>423-440</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the higher integrability of solutions to the Zaremba problem for the p(∙)-Laplacian in a plane domain with Lipschitz boundary. We prove that the Boyarsky–Meyers estimates for solutions are valid under a special ratio between the parts of the Dirichlet and Neumann conditions on the boundary.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-023-06611-x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2023-08, Vol.274 (4), p.423-440 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2866804338 |
source | Springer Nature |
subjects | Dirichlet problem Mathematics Mathematics and Statistics |
title | The Boyarsky–Meyers Inequality for the Zaremba Problem for p(∙)-Laplacian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Boyarsky%E2%80%93Meyers%20Inequality%20for%20the%20Zaremba%20Problem%20for%20p(%E2%88%99)-Laplacian&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Alkhutov,%20Yu.%20A.&rft.date=2023-08-04&rft.volume=274&rft.issue=4&rft.spage=423&rft.epage=440&rft.pages=423-440&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-023-06611-x&rft_dat=%3Cgale_proqu%3EA768322956%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368x-2e9ca3460f46e243029dbc158f27b0a9511e66f5c58a2c43d7a9e2164186f1053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866804338&rft_id=info:pmid/&rft_galeid=A768322956&rfr_iscdi=true |