Loading…
Anomalous microwave response in the dissipative regime of topological superconducting devices based on Bi2Te2.3Se0.7
Superconducting proximity junctions based on topological insulators are widely believed to harbor Majorana-like bound states. The latter serves as a paradigm non-local topological quantum computation protocols. Nowadays, a search for topological phases in different materials, perspective for a reali...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting proximity junctions based on topological insulators are widely believed to harbor Majorana-like bound states. The latter serves as a paradigm non-local topological quantum computation protocols. Nowadays, a search for topological phases in different materials, perspective for a realization of topological qubits, is one of the central efforts in quantum physics. It is motivated, in particular, by recent observation of anomalous ac Josephson effect, which being a signature of Majorana physics. Its manifestations, such as a fractional Josephson frequency and the absence of the first (or several odd in more rare cases), Shapiro steps, were reported for different materials. Here we study Shapiro steps in Nb/Bi2Te2.3Se0.7/Nb junctions, based on ultrasmall single crystals of a 3D topological insulator synthesized by a physical vapor deposition (PVD) technique. We present evidence that our junctions are ballistic. When subjected to microwave radiation, the junctions exhibit Shapiro steps, but the first step is missing. Typically it is assumed that the missing first step (MFS) effect cannot be observed in the presence of quasiparticle poisoning due to suppression of the 4{\pi}-periodic component. Our findings within the context of the RSJ-model of Josephson junction dynamics show that such behaviour of samples corresponds to a specific condition, requiring a minimum of 5% of the 4{\pi}-component for disappearance of the first Shapiro step. |
---|---|
ISSN: | 2331-8422 |