Loading…

Large-scale Kinetic Simulations of Colliding Plasmas within a Hohlraum of Indirect Drive Inertial Confinement Fusions

The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Ph...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-09
Main Authors: Liang, Tianyi, Wu, Dong, Ning, Xiaochuan, Lianqiang Shan, Zongqiang Yuan, Cai, Hongbo, Sheng, Zhengmao, He, Xiantu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Phys. Rev. Lett, 120, 195001, 2018] utilized the energy spectra of neutrons to investigate the kinetic colliding plasma in a hohlraum of indirect drive ICF. However, due to the typical large spatial-temporal scales, this experiment could not be well simulated by using available codes at that time. Utilizing our advanced high-order implicit PIC code, LAPINS, we were able to successfully reproduce the experiment on a large scale of both spatial and temporal dimensions, in which the original computational scale was increased by approximately 7 to 8 orders of magnitude. When gold plasmas expand into deuterium plasmas, a kinetic shock is generated and propagates within deuterium plasmas. Simulations allow us to observe the entire progression of a strong shock wave, including its initial formation and steady propagation. Although both electrons and gold ions are collisional (on a small scale compared to the shock wave), deuterium ions seem to be collisionless. This is because a quasi-monoenergetic spectrum of deuterium ions can be generated by reflecting ions from the shock front, which then leads to the production of neutrons with unusual broadening due to beam-target nuclear reactions. This work displays an unprecedented kinetic analysis of an existing experiment, shedding light on the mechanisms behind shock wave formation. It also serves as a reference for benchmark simulations of upcoming new simulation codes and may be relevant for future research on mixtures and entropy increments at plasma interfaces.
ISSN:2331-8422