Loading…

RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device

High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2023-10, Vol.31 (10), p.1-14
Main Authors: Fu, Siqing, Li, Tiejun, Zhang, Chunyuan, Li, Hanqing, Ma, Sheng, Zhang, Jianmin, Zhang, Ruiyi, Wu, Lizhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3
cites cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3
container_end_page 14
container_issue 10
container_start_page 1
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 31
creator Fu, Siqing
Li, Tiejun
Zhang, Chunyuan
Li, Hanqing
Ma, Sheng
Zhang, Jianmin
Zhang, Ruiyi
Wu, Lizhou
description High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12 \times higher performance in speeding up option pricing programs than software implementations of random number generation.
doi_str_mv 10.1109/TVLSI.2023.3298327
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2867398798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225417</ieee_id><sourcerecordid>2867398798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYufuRhsyuvtqgUKTFsrdSeQKo2KXaCxN-T0i6YzYw098xIB6FLRkeMUXWj3-f5bMQpFyPBlRQ8PUIDFscpUX0d9zNNBJGc0VN0FsKKUhZFig7QWzbNic4Wk1s8xhmEal1B3eJp9fFJ8i2Aw9p3gLOids0GL7rNEjyeQA2-aBuP74rQR5oa51qTF_2MH-C7snCOTspiHeDi0IdIPz3q-ymZv05m9-M5sVwlLWFxEoFLhVClAx4nVhZORLECIZdccqEYRLYsUtlvHAcqRZI46yyjnDFmxRBd789uffPVQWjNqul83X80XCapUDLtXQwR36esb0LwUJqtrzaF_zGMmp0982fP7OyZg70eutpDFQD8AziPI5aKX1QfaMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867398798</pqid></control><display><type>article</type><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</creator><creatorcontrib>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</creatorcontrib><description>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times&lt;/tex-math&gt; &lt;/inline-formula&gt; higher performance in speeding up option pricing programs than software implementations of random number generation.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3298327</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Behavioral sciences ; Circuit/system codesign ; Circuits ; Co-design ; Cryptography ; Entropy ; Generators ; High speed ; Instruction sets (computers) ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Microprocessors ; Monte Carlo ; Monte Carlo methods ; Power demand ; Random numbers ; Resilience ; RISC ; Sequences ; Switches ; Switching ; true random number generator (TRNG) ; Tunnel junctions</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2023-10, Vol.31 (10), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</citedby><cites>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</cites><orcidid>0000-0003-1710-4060 ; 0000-0002-0944-2708 ; 0000-0001-7732-4140 ; 0000-0003-4439-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Fu, Siqing</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Zhang, Chunyuan</creatorcontrib><creatorcontrib>Li, Hanqing</creatorcontrib><creatorcontrib>Ma, Sheng</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times&lt;/tex-math&gt; &lt;/inline-formula&gt; higher performance in speeding up option pricing programs than software implementations of random number generation.</description><subject>Acceleration</subject><subject>Behavioral sciences</subject><subject>Circuit/system codesign</subject><subject>Circuits</subject><subject>Co-design</subject><subject>Cryptography</subject><subject>Entropy</subject><subject>Generators</subject><subject>High speed</subject><subject>Instruction sets (computers)</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Microprocessors</subject><subject>Monte Carlo</subject><subject>Monte Carlo methods</subject><subject>Power demand</subject><subject>Random numbers</subject><subject>Resilience</subject><subject>RISC</subject><subject>Sequences</subject><subject>Switches</subject><subject>Switching</subject><subject>true random number generator (TRNG)</subject><subject>Tunnel junctions</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYufuRhsyuvtqgUKTFsrdSeQKo2KXaCxN-T0i6YzYw098xIB6FLRkeMUXWj3-f5bMQpFyPBlRQ8PUIDFscpUX0d9zNNBJGc0VN0FsKKUhZFig7QWzbNic4Wk1s8xhmEal1B3eJp9fFJ8i2Aw9p3gLOids0GL7rNEjyeQA2-aBuP74rQR5oa51qTF_2MH-C7snCOTspiHeDi0IdIPz3q-ymZv05m9-M5sVwlLWFxEoFLhVClAx4nVhZORLECIZdccqEYRLYsUtlvHAcqRZI46yyjnDFmxRBd789uffPVQWjNqul83X80XCapUDLtXQwR36esb0LwUJqtrzaF_zGMmp0982fP7OyZg70eutpDFQD8AziPI5aKX1QfaMs</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Fu, Siqing</creator><creator>Li, Tiejun</creator><creator>Zhang, Chunyuan</creator><creator>Li, Hanqing</creator><creator>Ma, Sheng</creator><creator>Zhang, Jianmin</creator><creator>Zhang, Ruiyi</creator><creator>Wu, Lizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1710-4060</orcidid><orcidid>https://orcid.org/0000-0002-0944-2708</orcidid><orcidid>https://orcid.org/0000-0001-7732-4140</orcidid><orcidid>https://orcid.org/0000-0003-4439-7436</orcidid></search><sort><creationdate>20231001</creationdate><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><author>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Behavioral sciences</topic><topic>Circuit/system codesign</topic><topic>Circuits</topic><topic>Co-design</topic><topic>Cryptography</topic><topic>Entropy</topic><topic>Generators</topic><topic>High speed</topic><topic>Instruction sets (computers)</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Microprocessors</topic><topic>Monte Carlo</topic><topic>Monte Carlo methods</topic><topic>Power demand</topic><topic>Random numbers</topic><topic>Resilience</topic><topic>RISC</topic><topic>Sequences</topic><topic>Switches</topic><topic>Switching</topic><topic>true random number generator (TRNG)</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Siqing</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Zhang, Chunyuan</creatorcontrib><creatorcontrib>Li, Hanqing</creatorcontrib><creatorcontrib>Ma, Sheng</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Siqing</au><au>Li, Tiejun</au><au>Zhang, Chunyuan</au><au>Li, Hanqing</au><au>Ma, Sheng</au><au>Zhang, Jianmin</au><au>Zhang, Ruiyi</au><au>Wu, Lizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>31</volume><issue>10</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\times&lt;/tex-math&gt; &lt;/inline-formula&gt; higher performance in speeding up option pricing programs than software implementations of random number generation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3298327</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1710-4060</orcidid><orcidid>https://orcid.org/0000-0002-0944-2708</orcidid><orcidid>https://orcid.org/0000-0001-7732-4140</orcidid><orcidid>https://orcid.org/0000-0003-4439-7436</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2023-10, Vol.31 (10), p.1-14
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_journals_2867398798
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Behavioral sciences
Circuit/system codesign
Circuits
Co-design
Cryptography
Entropy
Generators
High speed
Instruction sets (computers)
magnetic tunnel junction (MTJ)
Magnetic tunneling
Microprocessors
Monte Carlo
Monte Carlo methods
Power demand
Random numbers
Resilience
RISC
Sequences
Switches
Switching
true random number generator (TRNG)
Tunnel junctions
title RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RHS-TRNG:%20A%20Resilient%20High-Speed%20True%20Random%20Number%20Generator%20Based%20on%20STT-MTJ%20Device&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Fu,%20Siqing&rft.date=2023-10-01&rft.volume=31&rft.issue=10&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3298327&rft_dat=%3Cproquest_ieee_%3E2867398798%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867398798&rft_id=info:pmid/&rft_ieee_id=10225417&rfr_iscdi=true