Loading…
RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device
High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are d...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2023-10, Vol.31 (10), p.1-14 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3 |
container_end_page | 14 |
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 31 |
creator | Fu, Siqing Li, Tiejun Zhang, Chunyuan Li, Hanqing Ma, Sheng Zhang, Jianmin Zhang, Ruiyi Wu, Lizhou |
description | High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12 \times higher performance in speeding up option pricing programs than software implementations of random number generation. |
doi_str_mv | 10.1109/TVLSI.2023.3298327 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2867398798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225417</ieee_id><sourcerecordid>2867398798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYufuRhsyuvtqgUKTFsrdSeQKo2KXaCxN-T0i6YzYw098xIB6FLRkeMUXWj3-f5bMQpFyPBlRQ8PUIDFscpUX0d9zNNBJGc0VN0FsKKUhZFig7QWzbNic4Wk1s8xhmEal1B3eJp9fFJ8i2Aw9p3gLOids0GL7rNEjyeQA2-aBuP74rQR5oa51qTF_2MH-C7snCOTspiHeDi0IdIPz3q-ymZv05m9-M5sVwlLWFxEoFLhVClAx4nVhZORLECIZdccqEYRLYsUtlvHAcqRZI46yyjnDFmxRBd789uffPVQWjNqul83X80XCapUDLtXQwR36esb0LwUJqtrzaF_zGMmp0982fP7OyZg70eutpDFQD8AziPI5aKX1QfaMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867398798</pqid></control><display><type>article</type><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</creator><creatorcontrib>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</creatorcontrib><description>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> higher performance in speeding up option pricing programs than software implementations of random number generation.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3298327</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Behavioral sciences ; Circuit/system codesign ; Circuits ; Co-design ; Cryptography ; Entropy ; Generators ; High speed ; Instruction sets (computers) ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Microprocessors ; Monte Carlo ; Monte Carlo methods ; Power demand ; Random numbers ; Resilience ; RISC ; Sequences ; Switches ; Switching ; true random number generator (TRNG) ; Tunnel junctions</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2023-10, Vol.31 (10), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</citedby><cites>FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</cites><orcidid>0000-0003-1710-4060 ; 0000-0002-0944-2708 ; 0000-0001-7732-4140 ; 0000-0003-4439-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Fu, Siqing</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Zhang, Chunyuan</creatorcontrib><creatorcontrib>Li, Hanqing</creatorcontrib><creatorcontrib>Ma, Sheng</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> higher performance in speeding up option pricing programs than software implementations of random number generation.</description><subject>Acceleration</subject><subject>Behavioral sciences</subject><subject>Circuit/system codesign</subject><subject>Circuits</subject><subject>Co-design</subject><subject>Cryptography</subject><subject>Entropy</subject><subject>Generators</subject><subject>High speed</subject><subject>Instruction sets (computers)</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Microprocessors</subject><subject>Monte Carlo</subject><subject>Monte Carlo methods</subject><subject>Power demand</subject><subject>Random numbers</subject><subject>Resilience</subject><subject>RISC</subject><subject>Sequences</subject><subject>Switches</subject><subject>Switching</subject><subject>true random number generator (TRNG)</subject><subject>Tunnel junctions</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYufuRhsyuvtqgUKTFsrdSeQKo2KXaCxN-T0i6YzYw098xIB6FLRkeMUXWj3-f5bMQpFyPBlRQ8PUIDFscpUX0d9zNNBJGc0VN0FsKKUhZFig7QWzbNic4Wk1s8xhmEal1B3eJp9fFJ8i2Aw9p3gLOids0GL7rNEjyeQA2-aBuP74rQR5oa51qTF_2MH-C7snCOTspiHeDi0IdIPz3q-ymZv05m9-M5sVwlLWFxEoFLhVClAx4nVhZORLECIZdccqEYRLYsUtlvHAcqRZI46yyjnDFmxRBd789uffPVQWjNqul83X80XCapUDLtXQwR36esb0LwUJqtrzaF_zGMmp0982fP7OyZg70eutpDFQD8AziPI5aKX1QfaMs</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Fu, Siqing</creator><creator>Li, Tiejun</creator><creator>Zhang, Chunyuan</creator><creator>Li, Hanqing</creator><creator>Ma, Sheng</creator><creator>Zhang, Jianmin</creator><creator>Zhang, Ruiyi</creator><creator>Wu, Lizhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1710-4060</orcidid><orcidid>https://orcid.org/0000-0002-0944-2708</orcidid><orcidid>https://orcid.org/0000-0001-7732-4140</orcidid><orcidid>https://orcid.org/0000-0003-4439-7436</orcidid></search><sort><creationdate>20231001</creationdate><title>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</title><author>Fu, Siqing ; Li, Tiejun ; Zhang, Chunyuan ; Li, Hanqing ; Ma, Sheng ; Zhang, Jianmin ; Zhang, Ruiyi ; Wu, Lizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Behavioral sciences</topic><topic>Circuit/system codesign</topic><topic>Circuits</topic><topic>Co-design</topic><topic>Cryptography</topic><topic>Entropy</topic><topic>Generators</topic><topic>High speed</topic><topic>Instruction sets (computers)</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Microprocessors</topic><topic>Monte Carlo</topic><topic>Monte Carlo methods</topic><topic>Power demand</topic><topic>Random numbers</topic><topic>Resilience</topic><topic>RISC</topic><topic>Sequences</topic><topic>Switches</topic><topic>Switching</topic><topic>true random number generator (TRNG)</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Siqing</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Zhang, Chunyuan</creatorcontrib><creatorcontrib>Li, Hanqing</creatorcontrib><creatorcontrib>Ma, Sheng</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Wu, Lizhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Siqing</au><au>Li, Tiejun</au><au>Zhang, Chunyuan</au><au>Li, Hanqing</au><au>Ma, Sheng</au><au>Zhang, Jianmin</au><au>Zhang, Ruiyi</au><au>Wu, Lizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>31</volume><issue>10</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>High-quality random numbers are very critical to many fields such as cryptography, finance, and scientific simulation, which calls for the design of reliable true random number generators (TRNGs). Limited by entropy source, throughput, reliability, and system integration, existing TRNG designs are difficult to be deployed in real computing systems to greatly accelerate target applications. This study proposes a TRNG circuit named resilient high-speed (RHS)-TRNG based on spin-transfer torque magnetic tunnel junction (STT-MTJ). RHS-TRNG generates resilient and high-speed random bit sequences exploiting the stochastic switching characteristics of STT-MTJ. By circuit/system codesign, we integrate RHS-TRNG into a reduced instruction set computer-V (RISC-V) processor as an acceleration component, which is driven by customized random number generation instructions. Our experimental results show that a single cell of RHS-TRNG has a random bit generation speed of up to 303 Mb/s, which is the highest among existing MTJ-based TRNGs. Higher throughput can be achieved by exploiting cell-level parallelism. RHS-TRNG also shows strong resilience against PVT variations thanks to our designs using bidirectional switching currents and dual generator units. In addition, our system evaluation results using gem5 simulator suggest that the system equipped with RHS-TRNG can achieve 3.4-12<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> higher performance in speeding up option pricing programs than software implementations of random number generation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3298327</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1710-4060</orcidid><orcidid>https://orcid.org/0000-0002-0944-2708</orcidid><orcidid>https://orcid.org/0000-0001-7732-4140</orcidid><orcidid>https://orcid.org/0000-0003-4439-7436</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2023-10, Vol.31 (10), p.1-14 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_journals_2867398798 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Behavioral sciences Circuit/system codesign Circuits Co-design Cryptography Entropy Generators High speed Instruction sets (computers) magnetic tunnel junction (MTJ) Magnetic tunneling Microprocessors Monte Carlo Monte Carlo methods Power demand Random numbers Resilience RISC Sequences Switches Switching true random number generator (TRNG) Tunnel junctions |
title | RHS-TRNG: A Resilient High-Speed True Random Number Generator Based on STT-MTJ Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RHS-TRNG:%20A%20Resilient%20High-Speed%20True%20Random%20Number%20Generator%20Based%20on%20STT-MTJ%20Device&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Fu,%20Siqing&rft.date=2023-10-01&rft.volume=31&rft.issue=10&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3298327&rft_dat=%3Cproquest_ieee_%3E2867398798%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-1564ed7339fde256c8ad3459e38b282391e4cfa786c8d2e08366dcdc102111c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867398798&rft_id=info:pmid/&rft_ieee_id=10225417&rfr_iscdi=true |